fbpx
How EV Charging Benefits from Edge Computing

How EV Charging Benefits from Edge Computing

Edge computing allows data to be stored and used on local devices. Integrating Edge Computing directly within electric vehicle charging infrastructure improves station usability and also allows for real-time energy management.

Car charging and electric vehicles

The era of electric vehicles (EV) is coming: Already one in every 250¹ cars on the road is electric. While it is uncertain when electric vehicles will overtake traditional combustion engine vehicles, electric is clearly the future. Car charging infrastructure is critical for electric vehicle expansion – and one of the largest bottlenecks to EV adoption. Range anxiety is still one of the primary concerns for potential EV customers,² and charging station proliferation is still far behind traditional gas stations.

State of the electric vehicle charging Market

The electric vehicle charging infrastructure market is still very divided, with many players vying for this large-growth sector – some predictions forecast over 40% CAGR for the car charging infrastructure market in the coming years.³ Car manufacturers, gas & oil, OEMs, and utilities companies (e.g. Tesla, VW, BMW, Shell, GE, Engie, Siemens, ABB) are actively taking part in the development of the market, recognizing the need to support future EV customers and the huge growth potential. Startups in the space like EcoG, Wirelane, flexEcharge and Elli offer solutions that focus on accessibility, efficiency and improving end user experiences.

Why Car Charging Stations need Offline Capability (Edge Computing)

First, let’s look at the challenges a vehicle charging provider needs to solve from a basic data perspective: Customers interfacing with charging stations require an account linked with basic information and payment methods. In order to charge a car, the user needs to be verified by the charging station, and is often required to have a pre-booked charging slot. Typically, a user would create a new account via a website or mobile phone beforehand, but not on the spot at the car charging station. Also booking slots are handled via a mobile app or website. However, the car charging station needs this information to allow a car to be charged.

This is only the most basic necessity. In the future, charging stations will provide more services to users, e.g. identifying users preference like cost over speed of charging, or choosing to charge with green energy. 

Depending on where the car charging station sits, it can be offline more or less often, e.g. in France there are quite many electric car charging stations in the country site, where the connection is typically flaky – and might not be available for days. On the other hand, there are stations that reside within a parking house or hotel and use a fixed land line for connectivity. In the latter case, your uptime can be very consistent, but typically you cannot guarantee the car charging station will be connected.

If the charging station tries to access this data only when it needs it, because a car is trying to charge, it may or may not have an internet connection at the time and thus the likelihood of failure is rather high. Accordingly, any new information should be pushed to the car charging stations when a connection is available and stored on the station. The hardware of a car charging station is capable enough to hold a lightweight database and persist data as is needed and useful.

Choosing a data persistence layer (database) over a simple caching ensures not only that no data is lost, but can also allow more processing to happen on the station and allows for autonomous reactions. In combination with edge synchronization, which enables persistence layers to synchronize between car charging stations (that share a data space), fast data persistence allows for efficient load balancing as well as easily updating the configurations of all car charging stations.

 

Smart Energy Load Management – the need for fast response on the Edge

Managing energy is one of the greatest challenges for EV infrastructure providers. The difficulty here is less about overall energy consumption increasing – rather managing, predicting and preparing for high-demand peaks. Imagine everyone needs charging during a large public event, or at charging stations during holiday travel times – peak demands like these need to be anticipated and planned for. The future with electric cars needs to balance demand with a combination of smart chargers, efficient energy grid management, Vehicle-to-Grid (V2G) solutions, and perhaps even on-site batteries at larger charging stations to improve time-to-charge and optimize for electricity prices.

Edge computing will play an important role in providing real-time, accurate energy load control, necessary for maintaining grid stability, particularly in emergency situations.⁴ At charging stations where many EVs plug in, smart edge nodes can balance charge schedules in real-time, optimizing based on EV owner requirements without overloading local transformers.⁵  On a larger scale, smart energy meters can use real-time edge computing to shift energy quickly to high-demand locations, cutting energy from low-priority appliances, limiting charge speeds, or pulling excess energy from V2G networks.

Thinking about energy management, the conversation fluidly moves from EV charging infrastructure to thinking about smart mobility, utilities, and smart city infrastructure on a larger scale. Car charging systems will be complex, interconnected and will progress in alignment with other ongoing digitization efforts to create data drive infrastructure across cities and the world. Edge computing, and base technologies like ObjectBox that enable working on the edge, are important enablers to ensure that real-time computing can happen anywhere and digitization is affordable, scalable, and sustainable.

MoodSpace Mobile App Use Case

MoodSpace Mobile App Use Case

Ian Alexander

Co-founder, MoodSpace

We speak with Ian Alexander, founder and lead developer at MoodSpace, an app making mental health exercises accessible to everyone. MoodSpace was released in 2019, and has over 150,000 downloads. After trying several databases, Ian settled on ObjectBox because of its high performance and ease of use.

Alyssa: Hi Ian, thank you so much for joining me and for using ObjectBox. Let’s start with the basics about MoodSpace and your role there.

Ian: Hi, Alyssa, thanks for having me. I’m the software developer, founder, and runner of the company – a jack of all trades. MoodSpace is an app that teaches concepts from mental health. There is a massive problem with accessibility to mental health. In the UK, for example, you have something like 1 in 4 people that have some sort of mental health problem, but only 1 in 113 go through therapy and complete it. So our essential goal is to take concepts from therapy and bring them closer to people, teaching them techniques that they can do on an ongoing basis. There’s no end date like in therapy, no waiting list, and it’s a lot easier to use it in places where you wouldn’t necessarily have access to a therapist. In the western world it is much easier to access therapy, still difficult in some ways, but much of the world doesn’t have that benefit. So that’s the goal we’re trying to reach. We started last year, we released the MoodSpace MVP in September, and now we’re going through the next stage of trying to raise our next round of funding – it’s quite exciting.

A: That’s great, congratulations! Can you tell me a bit more about your team?

I: We’re based in the UK, and in terms of the technical side, it’s just me. We also have various other roles: designer, copywriter, and another co-founder who handles much of the business side. But in terms of technical, it is just me for now. Hopefully after we get funding, we’ll be able to expand the technical team..

A: What’s your background, what did you do before MoodSpace?

I: Actually, I was originally a chemical engineer – I worked in oil & gas for a couple of years, but then I taught myself to develop and for the last 5-6 years, I’ve worked across a lot of startups, for example the dating app Once, when they were just starting up, also ITV, and then started on MoodSpace last year. Moodspace has actually existed for quite some time, it started as a hobby project of mine about 5 years ago.

A: There are other mental health apps out there, what makes MoodSpace special?

I: If you look at apps in the space, they’re generally fairly small and limited – they’ll have maybe 4 or 5 exercises. Versus the realm of therapy, which has literally thousands of exercises. Any app that exists at the moment takes just a fraction of a percent of therapy and tries to teach it. Our USP is that we are a very technically minded team, and with new technologies which have come out along with our internal processes, we can make a much bigger app, building something far bigger than what currently exists, much cheaper and far faster. Our USP is strangely, less about the app, and more about our process and the technology that we use to make the app. The tech we will be using is Kotlin Multiplatform, which is a cross platform framework which lets us maintain a single codebase which enables us to build fully native apps with full access to native APIs. 

A: It sounds like the app is quite comprehensive – who is your target audience?

I: At the moment, we haven’t hit the product-market-fit stage. We’re still figuring out who the typical user is. We find that the unique art style of our app has helped our growth so far, we often find a lot of people sharing screenshots of the app on social media. So we seem to have hit a niche, but we’re still figuring out what that niche is!

A: Do you have any interaction with your users?

I: Mid-last year, I put a survey in the app, so after using it for a certain time users get the survey. There are some questions like who you are, why you are using it, and they gave us way more knowledge about who is using it and what they use it for, which was very helpful. Apart from that though, it is very difficult to know.

A: Yes, it can be very challenging, we’re familiar with that struggle at ObjectBox as well. Switching gears a bit – I’d love to hear a bit more about how and why you ObjectBox.

I: As I mentioned, MoodSpace is about 5 years old, so it’s gone through several databases. One of them was really time consuming to make – it wasn’t ORM based, so you had to write a lot of stuff yourself. Then the next was an ORM called Sugar, but it stopped being developed – it was a side project by someone, so maybe I shouldn’t have used it in the first place (laughs).

I: So then we switched to ObjectBox, and actually the reason we switched was essentially to skip asynchronous code – I’ve always been a frontend developer and what I’ve come across is that asynchronous code makes things very complex, and it means app development takes much longer. Because we had a lot of time constraints and we wanted to develop as much as quickly as possible, I actually wanted to completely skip asynchronous code – which I wouldn’t recommend – but essentially ObjectBox let us do that because it’s very fast. You’d have to have a ton of data in the app, before it would visibly slow it down – and I did a lot of testing around that and it would have needed several years of data before noticeably slowing down the app. So, that was our original reason, perhaps a bit of a strange reason. And we’ve since changed the app so it’s asynchronous, so it won’t slow down any longer, no matter how much data you add in the app. Overall, I like ObjectBox a lot – it’s just simple, very easy to use.

A: What features in your app use the database?

I: Actually everything is in the app, as we don’t have a backend. So we need it to store all the data in the app.

A: Okay, sure. Keeping everything in the app is also practical from a data privacy standpoint. How did you actually find ObjectBox? 

I: It was someone I used to work with at Once – they used greenDAO and mentioned that ObjectBox (by the same people) was coming out. I looked into it a little bit and wanted to use it for a while, but it wasn’t I started developing MoodSpace again that I had a chance to. 

ObjectBox is very fast, it would have needed several years of data before noticeably slowing down the app. Overall, I like ObjectBox a lot – it’s just simple, very easy to use.

A: Are there any other developer tools that you’re excited about and would want to share with the community? 

I: Yes, Kotlin Multiplatform. Having been an Android developer, having used Kotlin for quite some time and having tried cross-platform tools before, I think Kotlin Multiplatform will change the way you make cross platform apps, because it lets you share so much of the code base without sacrificing the native experience. It has the potential of leading to massive cost savings in app development. Maybe in the next year or two I can see it having a huge impact on frontend development across mobile, web, and desktop.

A: What are your big picture goals for MoodSpace? Upcoming milestones? Does ObjectBox help with those at all?

I: Actually, it potentially will, with regards to ObjectBox Sync, which is part of my plan for that app. The app right now is only available on Android, and providing we get our next round of funding, we are going to be adding iOS – where we’ll need some sort of backend. We want to avoid, again, spending much money, and one of ObjectBox Sync, Realm Cloud or Firestore can help us do that – obviously as ObjectBox Sync is nearly ready, we’d want to use that. The main point around that is cost saving because it solves a lot of problems that otherwise we would have to solve ourselves – things like offline access and syncing with an API, that would otherwise be very time intensive.

A: Ian, thank you for your time and sharing more about MoodSpace and working with ObjectBox. We wish you the best of luck with your fundraising round!

Sync.Drone: a drone project based on ObjectBox

Sync.Drone: a drone project based on ObjectBox

This spring, a student group from Augsburg University of Applied Sciences build a drone application based on ObjectBox Database and Sync. This is a guest blog post by Michelle from the sync.drone project group, describing the project from start to finish and sharing the results. 

The goal: Showcasing the ObjectBox database and Synchronization solution with drones

The goal of the project was to synchronize the colors and flight patterns between two drones to coordinate themselves autonomously in formation flight to showcase the ObjectBox solution. In the future, this technology could be used in many drone applications. First, due to ObjectBox’ speed, more data can be processed faster on each drone, saving resources, specifically battery. This allows drones to fly longer. At the same time, going beyond the scope of this initial showcase, the technology could be used to synchronize swarms of drones, making their use more reliable and flexible – and less dependant upon a constant Internet connection. For example, as an artistic installation, or in emergency situations during a large-scale search for missing persons. Drones can also be used in large warehouses to facilitate the organization of different parts, and pass on the position of a particular part.

 In this article, we will explore the process we used to build our self-synchronizing drones, sharing our software and hardware, so you can try it out yourself.

Hardware: Raspberry Pi, 3D printing, and more

In order to build our drones and turn our vision into reality, we had to consider a number of hardware options. It was important that our drone was compatible and programmable with ObjectBox. The drone had to be localizable and airworthy, so that a safe autonomous flight was possible. All parts had to be compatible so we could easily swap parts if something did not meet our requirements.

We built the drone frame from scratch, using 3D printers. The housing was created in the 3D program Autodesk Inventor and the parts were assembled to a drone frame. We used NeoPixel RGB LED sticks to make the drone glow in color. We chose the following components. 

Microcomputer

A Raspberry Pi was the most suitable central computer on our drone. It offered both performance and size. We chose the Raspberry Pi 3 B+, which would later control the processes of our drone independently.

Tracking system 

After looking at different tracking systems, we chose the “POZYX” UWB tracking system. This ensured an accurate and user-friendly handling.

Accumulator

We had to make sure that the drone’s battery would last long enough to power a Raspberry Pi, LEDs and a POZYX tag in addition to the flight hardware. First started with a 6 cell LiPo battery with 5000mAh. However, later in the project, we replaced the battery with a lighter and more compact 6-cell LiPo battery with 1800mAh.

Engines

The engines (1750 kV) from the Drone-Racing sector had enough power to make the drone fly. Motors with even lower kV would have given the drone more power, but are much more expensive.

Flight controller 

As flight controller we chose the “Omnibus F4 V6” chip, which ran with the open source software “Beta Flight” and was accessible via the so-called Multiwii Serial Protocol (MSP). This allowed us to use the advantages of a proven flight software, and also transfer the flight instructions via USB directly to the flight controller using the MSP.

Electronic Speed Controller (ESC) 

For the ESC , which implements the instructions of the flight controller by direct voltage changes at the motors, we chose a 4-in-1 model. With only one connection cable to the flight controller, all four motors can be controlled at the same time. Usually one ESC is required per motor. It was also compatible with our hardware.

Software – Tracking, Flying and Syncing the Drones

Except for a start signal, the drone was supposed to operate without a remote control. Several drones would coordinate themselves at the same time according to the instructions. We decided to develop the code in three separate “cores”, which were merged at the end of the project. These were divided into “tracking”, “flying” and “syncing”. Using the university git lab as a repository, we were able to simplify development and share the code with the group. This allowed structured work on the code. With the help of ObjectBox and Prof. Dr. -Ing. Alexandra Teynor we were able to assemble the following code parts.

Tracking 

For collision avoidance it was important to implement tracking, so that the drone knows it’s own position. We solved this by using the position calculated by the POZYX tag, which was then transmitted to the Raspberry Pi in the tracking core.  We read the coordinates from the IMU sensors (“inertial measurement unit” = unit of measurement based on multiple sensors ) from the POZYX tag, but not the exact positioning.

The so called “heading”, or yaw of the drone, is read out by a magnetometer. However, this internal “compass” reacts to disruptive factors and can deliver inaccurate results. We solved the correction of the heading via an algorithm using OpenCV. This algorithm uses a small camera module on the drone and special markings on the ground to detect its orientation. This allows the direction vectors of the drones to be calculated more accurately.

Flying

In the flying core, the flight instructions were developed based on the tracking core data, and then implemented by passing this data on to the flight controller. First of all the drones have to be lifted off the ground. For this purpose we used a laptop keyboard control, which forwarded flight instructions to the drone via a web socket.

Flight control

The Raspberry Pi establishes a serial connection to the flight controller via USB. As soon as this connection is established, flight instructions are transmitted in the form of inclination values for roll, pitch, yaw and throttle (thrust). These values may lie between 1000 and 2000. In a neutral position, roll, pitch and yaw are at an average value of 1500.  

Using Python, we calculated the required roll, pitch, yaw and throttle values and assembled them using the Multiwii Serial Protocol. This was translated into pure byte code and sent to the flight controller via the USB cable. The flight controller now tries to reach the corresponding values. In order to turn to the right, the left motors are turned slightly up and the right motors slightly down. The ESC received the commands for the desired motor speed from the flight controller. It then applied the required voltage to each motor according to its instructions. The communication between the flight controller and ESC happened either by an analog (PWM) signal or a digital signal (D-Shot).

Keyboard control 

The computer runs a Python script that registers keystrokes and converts them into instructions. For example, pressing the right arrow key creates the command “raise-roll” and pressing the left arrow key triggers the command “lower-roll”.

The drone also runs a Python script that opens a web socket to which the PC script connects. Each time a key is pressed on the laptop, a corresponding command string is generated (e.g. “raise-yaw”) and sent to the drone via the web socket. As soon as a string arrives, the relevant value (roll, pitch, yaw, throttle) is increased or decreased.

To prevent the drone from crashing if a connection is lost, the values are flattened algorithmically.

ObjectBox Database and Sync Drone Implementation  

In the syncing core, the position data of all drones as well as the LED color, should be exchanged and commands passed on. The RGB color space of the LEDs was mapped to the x-, y- and z-position. In this way, the sync features of the drones could be displayed without them flying. For the implementation we used the ObjectBox database and the ObjectBox Sync Server.

Originally, we had planned to use the ObjectBox Go Binding because it is precompileable and very fast. However, the POZYX system we choose used Python. There was also already a Python implementation available for our flight controller, but none available for Go. Luckily, ObjectBox offered to develop and provide a small Python binding of their database according to our needs. This included all ObjectBox functions that were relevant to us. It was officially released in version 0.1.0 specifically for our project. As a result, the ObjectBox database could be easily integrated into our code.

Realization of syncing

In Python version 0.1.0, ObjectBox incorporated the basic features we needed. For our application the simple CRUD functions and the Sync feature, which synchronizes the data in near real time, were sufficient. The database is compact and the speed and ease of use is optimized for restricted IoT devices, for example the Raspberry Pi used in this project.

The sync server is started by running the init-server.py script on the master drone. At first, an empty database (model) was initialized. The master drone then communicates with the other drones via WLAN network connection and synchronizes the ObjectBox database between the respective devices.

Three entities (classes) are stored:
– the identification and position data of the anchors
– the identification and position data of the tags
– the color values of the LEDs.

The drone stored it’s position and LED color in the database. The master drone then reads out this information and overwrites it  with the values calculated by the master drone (e.g. LED color or target position in the future).

Thank you!

At the end of our project, we had three drones. Depending on the position of the master drone, all drones could synchronize their LED colors. Unfortunately we were not able to finish the flight due to a defect in the flight controller and a delayed delivery of parts. Finally we decided to publish the code for the drone control on GitHub. Additionally, you can get inspired on our website as well as on our social media platforms. 

Furthermore, we would be happy, if the project would be continued by another group of students in the future. With our work we have created a basis for many more ideas. In summary, our project still has a lot of ambitious potential for the future.

Thanks to ObjectBox for this great opportunity – we mastered many problems along the way and learned a lot. Thanks for the constant support.We also thank our professors Prof. Dr. -Ing. Alexandra Teynor, Prof. KP Ludwig John and our coach Sandra Hobelsberger for their professional advice and patience. Finally, we would like to thank HSA_Innolab for their additional financial support and FabLab for their advice and resources.

In collaboration with interactive media students of the University of Applied Sciences in Augsburg.

 

Car Tolling – A case for Edge Computing

Car Tolling – A case for Edge Computing

Governments often face tight budgets on infrastructure development; car tolling is increasingly seen as the answer for raising funds¹, making it more and more prevalent. From 2008 to 2018 the total length of tolled roads in Europe increased by 23%² and tolling revenue in Europe increased by 37%³ to €31.3 bn. per year; similarly, from 2010 to 2015 the United States experienced a 63% increase in transponders and 52% more tolling revenue, resulting in $13.8 bn. in 2015. On top, despite car sharing efforts, car ownership and traffic is still increasing in many countries, e.g. Germany, France and India. Increasing amounts of traffic, devices, and data points bring current tolling solutions to their limits. Taking data to the edge in new and existing tolling solutions, for example with the ObjectBox data storage and synchronization solution, can make tolling more efficient and reliable.

Setting the stage: a typical car tolling situation

A national infrastructure company has deployed several hundred car tolling stations all over the country. These stations automatically recognize passing cars by detecting licence plates, using visual recognition or wirelessly, e.g. by receiving data from an RFID transponder in the car. In order to ensure that only eligible cars are passing through the tolling station and violators are fined, it is necessary for the tolling station software to look up the gathered vehicle information – among millions of entries – as fast as possible. If the data look-up is not  fast enough, or the data on the roadsides/tolling stations isn’t up to date and in sync with the central data, the tolling station loses money.

“The importance of mobile apps is increasing for Kapsch TrafficCom so that we see ObjectBox’ edge computing database solution as an interesting future base technology for all types of mobility apps.”

Peter Ummenhofer

Executive VP Solution Management, Kapsch TrafficCom

Why edge computing and fast lookup is key to today’s car tolling systems

In general, modern nationwide tolling infrastructure consists of three systems: tolling stations operated by the respective agencies, central open road, also called mobile tolling, and central transaction clearing houses. Within this infrastructure, all data related to violators and other operational information needs to be synchronized between these three systems in a consistent way, with as little delay as possible. If this is not the case, together with other problems, car tolling system operators are faced with high monetary losses every day.

Today’s car tolling systems are based on the fundamental idea that cars do not need to stop to be checked or charged. Thus, as the cars move quickly through the scanning area, the challenge of implementing a car tolling system directly relates to the amount of data that needs to be searched within a very short time frame.  To be successful, this process needs to happen in near real-time. From a development perspective, these problems are rooted in:

  • accessing data from a remote location (speed of communication, speed of network)
  • keeping data in synchronization with car tolling stations that are closer to the drivers and/or roadside units
  • database speed on remote servers
  • database speed on roadside units (car tolling edge devices)
  • limitations of existing hardware as some systems are quite old, and rolling out new hardware is expensive

Furthermore, it is possible that stations shut down from time to time, due to the weather, power outages, vandalism or simply technical failures. However, tolling providers generally need to provide strict uptime guarantees and thus service level agreements often include penalty fees in case of excessive downtime. Such events cost the providers substantial amounts of money – and data loss, i.e. undetected violators, even more so.

Adding to this, privacy and legal requirements differ from country to country and increase the complexity of the systems and timings. For example, in Austria the pictures and derived license plate information may only be used for checking, but in case no violation was detected, they need to be removed in an unrecoverable manner¹⁰. On the other hand, the data of potential violators may be stored for the sole purpose of toll collection or prosecution, but only for a maximum of three years.

How fast data storage and syncing can help in car tolling

To solve these problems, a data storage and data synchronization solution like ObjectBox can be deployed on every type of tolling station, i.e. open and static stations, as well as on the central server. From a technical point of view, this is not a problem, because the ObjectBox library supports virtually all platforms and operating systems. Financially, it is considerably cheaper to update software, than it is to upgrade hardware.

Having the library installed, with ObjectBox Sync, it is guaranteed that the vehicle data in the internal stations’ memory is always up-to-date with the central server, so the station will make a decision based on the most accurate data every time. Additionally, the other systems involved in the tolling infrastructure consistently receive the most recent information with no further effort required.

Deploying the synchronization solution also means, because ObjectBox is particularly reliable (ACID compliant) and well-tested, that station shutdowns or internet connection issues are not a problem anymore. The stations’ operating company will no longer lose violator’s information due to technical reasons.

Summary – Car tolling is moving to the edge

As this case study shows, the use of edge computing is a perfect fit for modern infrastructure. In the context of car tolling, speed, reliable data storage and synchronization are indispensable, resulting in ObjectBox being an effective solution for today’s and future technological advancements.

If you are interested in learning more, feel free to get in touch with us! We appreciate any kind of feedback.

billiger.de Mobile App Case Study

billiger.de Mobile App Case Study

Arne Jans

Arne Jans

Software Developer, solute

Vivien: Hi Arne, great to talk with you today. Let’s get started by learning more about you and billiger.de.

Arne: Hi Vivien. I’ve been doing software development for more than 10 years, and API design for the last 5 years. I am currently responsible for mobile development for billiger.de, the most widely used and award-winning price comparison portal in Germany. We’re especially proud of our data security, which was just recently awarded too.

The company behind billiger.de is solute GmbH, which is based in Karlsruhe. They also have a few other brands: shopping.de, an online shopping platform for men and women, and friends communication, an online marketing agency. At billiger.de we’re about 150 employees.

Some of our stats:

300,000+

active daily users on billiger.de

500,000+

app downloads

70 Million

prices in the database

22,500 Shops

comparing 1M products

So clearly, the database and its performance on the server side is very important. Companies update their prices all the time, and on top there are all kinds of vouchers that can be applied. All of these are changing frequently – and you never know who updates their prices when. So, you can see the challenges – from a technical standpoint but also for consumers. It is hard to get the best price.

V: Tell me more about the billiger.de app – why did you decide to go for a native app?

A: Well, to be honest there was an existing native app when I came into the company. But aside from that, it’s essential for UX. We also need some offline capability for features like the notepad function or when users are in the store without an Internet connection and scan barcodes. Once they are online again, the query goes to the cloud – and the user gets his result.

V: So are most of your users on the app? Or rather web?

A: We definitely still have more web users, but user numbers are shifting to mobile more and more. Also, our web users are often one time users only. Our loyalty rate is much higher with app users, so we are trying to increase app installs. We’re seeing that – even on the web – the majority of users are coming from mobile devices. Therefore, we relaunched the website a couple of years ago to be responsive and mobile optimized. So we are focusing more and more on mobile, on both the website and through the app. 

V: Why did you need to implement a local database? How is it implemented in your solution?

A: We need data persistence mainly for certain features. We’re still using SQLite, but it’s too much boilerplate code and too little fun. We have been using an ORM on top of SQLite until recently, but it didn’t work well in combination with Proguard on some Android versions anymore. So it resulted in lost data. We’re currently using ObjectBox in the billiger.de Pro version and in a fun new project called PricePretzel, which gives users the best price actively and tracks savings. In these projects, ObjectBox has proven its worth, so we want to migrate the billiger.de app too. 

V: Yes, SQLite with an ORM can get very messy. So, why did you choose ObjectBox as the alternative?

A: I looked at several SQLite alternatives and ObjectBox looked interesting. The main decision factors were: ease of integration, stability, and performance. But ease of use and integration were really the most important factors. Stability and enough performance were rather basic necessities. We found ObjectBox really easy to use – we did the migration and everything and because ObjectBox handles that automatically, it was really simple.

We found ObjectBox really easy to use – we did the migration and everything and because ObjectBox handles that automatically, it was really simple.

V: So did performance matter to you at all?

A: For our needs, performance was secondary. Obviously the performance needs to be good enough, but we do not have super high requirements regarding performance.

V: Do you do any sort of synchronization

A: Synchronization obviously is a super interesting feature and we are keeping an eye on it once it is publicly released. From the setup we have, we would need to do it with a connector to our existing database. Currently the web data and app data are separated and we are working on integrating them. So, this needs synchronization. 

V: Which other tools do you use in your solution/are you excited about?

A: Retrofit from Square, a networking library, we recommend it to everyone and it works super well with ObjectBox. Both libraries work well together with our business objects. Retrofit fetches the fresh data from our servers and deserializes it into our business objects, which are then persisted with ObjectBox without any additional boilerplate code.

V: billiger.de has over 500.000 downloads and about 4 stars on average – how many daily users does the billiger.de app have? Do you have peak times?

A: Obviously holidays like Christmas and Easter are busier. During the day, early evenings get the most traffic – about 1000-2000 daily active users in the billiger.de app, 200 in our Pro-app, and iOS is similar. As I shared before, we get about 300k daily users on the website.

V: Thanks for sharing, and for talking with me today. Any last words?

A: Thank you for having me! I am looking forward to do more with ObjectBox and am very excited about what comes next!

Edge Computing Case Study with easyGOband: How ObjectBox enables compatibility from Android, iOS, and Raspbian to Linux

Edge Computing Case Study with easyGOband: How ObjectBox enables compatibility from Android, iOS, and Raspbian to Linux

Christian Bongardt

Christian Bongardt

CTO, easyGOband

In this case study, we talked with easyGOband CTO Christian Bongart about their implementation of ObjectBox in a cashless payment and access control solution, which spans across devices from Android to Raspberry Pi.

Alyssa – Hi Christian, thanks for joining me. Can you quickly introduce yourself and easyGOband?

Christian – Hi Alyssa, thanks. I am the co-founder of easyGOband and the CTO. We founded easyGOband back in 2017 as a product for music festivals. We introduced RFID wristbands as an access control system and as a payment solution for music festivals, since they have issues with connectivity.

Normally festivals only accept cash or they have a plastic token system. easyGOband, is a cashless system where you link your entry ticket over web application with your barcode. You can prepay your Near-Field Communication (NFC) wristband with lets say €20, for example. We activate and validate your ticket through the access control, and we hand you over the activated NFC wristband which would then contain the €20. Each seller then has an android device, which is like a small POS device, where you can enter the products you want to charge and the balance gets removed from the wrist band.

A – So, tell me a bit more about where the data sits.

C – The actual data is all stored in the wrist band and on the POS device. So it works in low connectivity environment because music festivals the massification of all the people together adds connectivity issues. Antennas can’t make it. Wifi is also a problem because of interference with audio devices, microphone and stuff like this – it is very hard to have a good connectivity. Other music festivals have invested online solutions with WiFi and they always have big problems with it because music festivals have 60,000 – 70,000 attendants and then the whole payment system goes down – it’s a catastrophe. That many people – no beer, that’s not good at a music event. And that’s how our company was initially born. We have been working in music festivals all over the world, in small music festivals, in bigger music festivals, in Argentina and Mexico, in Ecuador, and in Spain mostly. 

A – Are music festivals still your primary target group? 

C – Well, we noticed that this music festival business is not the best business we could pick up because it is very hard. Every year, you have to rearrange the agreement with the music festivals. It is quite hard for them to pay and then we noticed that our product could be well suited as well for hotels and resorts. And then we started to work with some large hotel customers, for example, in Spain we worked with Globalia which is the owner of Air Europa. Or Grupo Piñero, and in Cancun working with hotel chain called Oasis and now we are quite far into the hotel business and it’s working quite well.

A – Okay, that makes sense, hotels are a big market. So, tell me a bit about how you use ObjectBox, what does our solution solve for easyGOband?

C – The thing is, the low connectivity environment for us plays a pretty important role in our product. And that means we have to store a lot of data locally on the devices. For example, when the device makes a transaction, it tries to make the notification through the application server but if it can’t notify it then it just stores the data locally and tries again afterwards. For example, all transactions that are made during the event or hotel will store it locally on every single device so that device – as long as it has any connectivity during the operation even if the connectivity breaks at a single moment – can still see all the data: which transaction has been made, what’s the balance, what room is this wristband related to, what access group has it. We combine the data that we synchronize with the application server with ObjectBox, and the data that we can get real time with the NFC wristbands, we can operate 100% even if we are out of connectivity.

We first started with just SQLite. The thing is, we have to work on different devices. We have to work on Android devices, on Linux devices, we have to work on Windows PC and other devices. Something happened in the Android versions I think with the JDBC driver for SQLite and then we needed two different implementations. One with the native SQLite driver from Android and one with just the JDBC driver. That wasn’t ideal for us, more maintenance. After that we tried H2 but there were some issues with corrupting the DBs and stuff like this. And then I found ObjectBox and we give it a try and it worked quite well. And we are now using ObjectBox on all our devices – Windows PC, Linux PC, we are even using Raspberry Pi. 

We have to work on different devices. We have to work on Android devices, on Linux devices, we have to work on Windows PC and other devices.

A – Very cool. What’s the use case for the Raspberry Pi?

C – We have a system where we integrate with gatekeeper devices, like automatic doors, and we have one single Raspberry Pi for each gatekeeper. You scan the wrist band, the Raspberry Pi makes the connection with the gatekeeper and opens the door, for example. Or in general we use it for access control system for example, camping or resorts where you have access to the gym, it’s an electro magnetic door and we connect the Raspberry Pi to it and with a relay to open the door for it. And the Raspberry Pi is perfect for this. The newer Raspberry Pis run java based applications very well. Even with a user interface, we found it works well. ObjectBox is just perfect for us, since we can use it on all the different devices, one single implementation for all the repositories. For us, it’s perfect.

A – I believe it. So, in terms of implementation, was it fairly easy to do so across the different devices, were there any challenges?

C – It was quite easy. There was some smaller workarounds. For example we had to stick to number IDs, but the IDs on our system are UIDs. Because data is generated on the devices, we have to use UIDs, we cannot just use a non-sequential ID for this. Just some smaller workarounds – I think you are already working on different solutions that would fix our minor issues. Performance is very good. Implementation was done by one week or so, so yeah, it was quite good.

A – What are some big picture goals for your company, in terms of your road map, product road map?

C – Our next goal is a whole new product for hotels. Because, when we started doing business with hotels and we began seeing what our customers need. Now we have learned enough so we can do a single product for our hotel customers. We are going to do a web page and connect to peripherals over websockets. This means, for example, you as an operator in a hotel, as a receptionist, you login to your web panel, and there’s a button that says, let’s say – “Activate RFID Wristband” and we can connect to the device and execute the order that was initiated by the receptionist. The peripherals in Android devices, and in general would all be using ObjectBox to sync and store on the later. 

ObjectBox is just perfect for us, since we can use it on all the different devices, one single implementation for all the repositories.

A – Great that you are able to solve a specific customer pain point. What are you using as a synchronization solution, is that built in house?

C – Yes, yes. On the app server, we use MySQL, I think Aurora Serverless from Amazon and we use JOOQ, a query builder on top of it to build our queries and stuff like this, and then we have an SDK on the client size which uses ObjectBox to store the data on the device.

A – Okay, that’s interesting. Maybe, if you’re familiar or not, we have a synchronization solution for ObjectBox as well.

C – Yes, I’ve been looking into it. Looks good, we will definitely try it out when it’s released. We generate data on different devices and all devices need to sync data that is generated by all the other different devices. 

A – So, did you look at ObjectBox because of performance at all?

C – Not really, we were mostly having issues in terms of compatibility. That was the main reason we switched from SQLite or H2 to ObjectBox. It wasn’t only performance related. For example, with SQLite, the performance we were getting was okay. Because the data was stored on every single device, it’s not that much data volume that you have. For example, even at the largest music festival, maybe the biggest we make 1000 or 2000 transactions in minutes or at most. We don’t generate that much data. It was much more relevant with the different compatibility, on the different devices, and that code-base was usable on the most devices possible. That was very important for us. Obviously performance is also important – but it’s not the most important thing for us. 

A – Sure, so performance wasn’t necessarily a driver there. Anything else you would like to share about using ObjectBox?

CYou solved a lot of issues that we were facing. And the thing is, we are very happy that every time we have an issue, for example, we found an issue that we couldn’t use it on 32-bit windows devices, that was also almost a year ago, it was fixed within just a few weeks and that is very nice. We have never found such a good and quick response from 3rd party and free solution. Later on we had the issue with the Raspberry Pi where we couldn’t use it because of some issue with your continuous integration – also it was solved by you. That was amazing, I don’t know how to thank you. 

A – That’s great to hear. Our community is extremely important to us, it’s a large part of why we’re building ObjectBox. Thank you for sharing your case study, it will be nice to be able to give other users an idea of how ObjectBox can be implememented in so many different applications.