fbpx
Car Tolling – A case for Edge Computing

Car Tolling – A case for Edge Computing

Governments often face tight budgets on infrastructure development; car tolling is increasingly seen as the answer for raising funds¹, making it more and more prevalent. From 2008 to 2018 the total length of tolled roads in Europe increased by 23%² and tolling revenue in Europe increased by 37%³ to €31.3 bn. per year; similarly, from 2010 to 2015 the United States experienced a 63% increase in transponders and 52% more tolling revenue, resulting in $13.8 bn. in 2015. On top, despite car sharing efforts, car ownership and traffic is still increasing in many countries, e.g. Germany, France and India. Increasing amounts of traffic, devices, and data points bring current tolling solutions to their limits. Taking data to the edge in new and existing tolling solutions, for example with the ObjectBox data storage and synchronization solution, can make tolling more efficient and reliable.

Setting the stage: a typical car tolling situation

A national infrastructure company has deployed several hundred car tolling stations all over the country. These stations automatically recognize passing cars by detecting licence plates, using visual recognition or wirelessly, e.g. by receiving data from an RFID transponder in the car. In order to ensure that only eligible cars are passing through the tolling station and violators are fined, it is necessary for the tolling station software to look up the gathered vehicle information – among millions of entries – as fast as possible. If the data look-up is not  fast enough, or the data on the roadsides/tolling stations isn’t up to date and in sync with the central data, the tolling station loses money.

“The importance of mobile apps is increasing for Kapsch TrafficCom so that we see ObjectBox’ edge computing database solution as an interesting future base technology for all types of mobility apps.”

Peter Ummenhofer

Executive VP Solution Management, Kapsch TrafficCom

Why edge computing and fast lookup is key to today’s car tolling systems

In general, modern nationwide tolling infrastructure consists of three systems: tolling stations operated by the respective agencies, central open road, also called mobile tolling, and central transaction clearing houses. Within this infrastructure, all data related to violators and other operational information needs to be synchronized between these three systems in a consistent way, with as little delay as possible. If this is not the case, together with other problems, car tolling system operators are faced with high monetary losses every day.

Today’s car tolling systems are based on the fundamental idea that cars do not need to stop to be checked or charged. Thus, as the cars move quickly through the scanning area, the challenge of implementing a car tolling system directly relates to the amount of data that needs to be searched within a very short time frame.  To be successful, this process needs to happen in near real-time. From a development perspective, these problems are rooted in:

  • accessing data from a remote location (speed of communication, speed of network)
  • keeping data in synchronization with car tolling stations that are closer to the drivers and/or roadside units
  • database speed on remote servers
  • database speed on roadside units (car tolling edge devices)
  • limitations of existing hardware as some systems are quite old, and rolling out new hardware is expensive

Furthermore, it is possible that stations shut down from time to time, due to the weather, power outages, vandalism or simply technical failures. However, tolling providers generally need to provide strict uptime guarantees and thus service level agreements often include penalty fees in case of excessive downtime. Such events cost the providers substantial amounts of money – and data loss, i.e. undetected violators, even more so.

Adding to this, privacy and legal requirements differ from country to country and increase the complexity of the systems and timings. For example, in Austria the pictures and derived license plate information may only be used for checking, but in case no violation was detected, they need to be removed in an unrecoverable manner¹⁰. On the other hand, the data of potential violators may be stored for the sole purpose of toll collection or prosecution, but only for a maximum of three years.

How fast data storage and syncing can help in car tolling

To solve these problems, a data storage and data synchronization solution like ObjectBox can be deployed on every type of tolling station, i.e. open and static stations, as well as on the central server. From a technical point of view, this is not a problem, because the ObjectBox library supports virtually all platforms and operating systems. Financially, it is considerably cheaper to update software, than it is to upgrade hardware.

Having the library installed, with ObjectBox Sync, it is guaranteed that the vehicle data in the internal stations’ memory is always up-to-date with the central server, so the station will make a decision based on the most accurate data every time. Additionally, the other systems involved in the tolling infrastructure consistently receive the most recent information with no further effort required.

Deploying the synchronization solution also means, because ObjectBox is particularly reliable (ACID compliant) and well-tested, that station shutdowns or internet connection issues are not a problem anymore. The stations’ operating company will no longer lose violator’s information due to technical reasons.

Summary – Car tolling is moving to the edge

As this case study shows, the use of edge computing is a perfect fit for modern infrastructure. In the context of car tolling, speed, reliable data storage and synchronization are indispensable, resulting in ObjectBox being an effective solution for today’s and future technological advancements.

If you are interested in learning more, feel free to get in touch with us! We appreciate any kind of feedback.

billiger.de Mobile App Case Study

billiger.de Mobile App Case Study

Arne Jans

Arne Jans

Software Developer, solute

Vivien: Hi Arne, great to talk with you today. Let’s get started by learning more about you and billiger.de.

Arne: Hi Vivien. I’ve been doing software development for more than 10 years, and API design for the last 5 years. I am currently responsible for mobile development for billiger.de, the most widely used and award-winning price comparison portal in Germany. We’re especially proud of our data security, which was just recently awarded too.

The company behind billiger.de is solute GmbH, which is based in Karlsruhe. They also have a few other brands: shopping.de, an online shopping platform for men and women, and friends communication, an online marketing agency. At billiger.de we’re about 150 employees.

Some of our stats:

300,000+

active daily users on billiger.de

500,000+

app downloads

70 Million

prices in the database

22,500 Shops

comparing 1M products

So clearly, the database and its performance on the server side is very important. Companies update their prices all the time, and on top there are all kinds of vouchers that can be applied. All of these are changing frequently – and you never know who updates their prices when. So, you can see the challenges – from a technical standpoint but also for consumers. It is hard to get the best price.

V: Tell me more about the billiger.de app – why did you decide to go for a native app?

A: Well, to be honest there was an existing native app when I came into the company. But aside from that, it’s essential for UX. We also need some offline capability for features like the notepad function or when users are in the store without an Internet connection and scan barcodes. Once they are online again, the query goes to the cloud – and the user gets his result.

V: So are most of your users on the app? Or rather web?

A: We definitely still have more web users, but user numbers are shifting to mobile more and more. Also, our web users are often one time users only. Our loyalty rate is much higher with app users, so we are trying to increase app installs. We’re seeing that – even on the web – the majority of users are coming from mobile devices. Therefore, we relaunched the website a couple of years ago to be responsive and mobile optimized. So we are focusing more and more on mobile, on both the website and through the app. 

V: Why did you need to implement a local database? How is it implemented in your solution?

A: We need data persistence mainly for certain features. We’re still using SQLite, but it’s too much boilerplate code and too little fun. We have been using an ORM on top of SQLite until recently, but it didn’t work well in combination with Proguard on some Android versions anymore. So it resulted in lost data. We’re currently using ObjectBox in the billiger.de Pro version and in a fun new project called PricePretzel, which gives users the best price actively and tracks savings. In these projects, ObjectBox has proven its worth, so we want to migrate the billiger.de app too. 

V: Yes, SQLite with an ORM can get very messy. So, why did you choose ObjectBox as the alternative?

A: I looked at several SQLite alternatives and ObjectBox looked interesting. The main decision factors were: ease of integration, stability, and performance. But ease of use and integration were really the most important factors. Stability and enough performance were rather basic necessities. We found ObjectBox really easy to use – we did the migration and everything and because ObjectBox handles that automatically, it was really simple.

We found ObjectBox really easy to use – we did the migration and everything and because ObjectBox handles that automatically, it was really simple.

V: So did performance matter to you at all?

A: For our needs, performance was secondary. Obviously the performance needs to be good enough, but we do not have super high requirements regarding performance.

V: Do you do any sort of synchronization

A: Synchronization obviously is a super interesting feature and we are keeping an eye on it once it is publicly released. From the setup we have, we would need to do it with a connector to our existing database. Currently the web data and app data are separated and we are working on integrating them. So, this needs synchronization. 

V: Which other tools do you use in your solution/are you excited about?

A: Retrofit from Square, a networking library, we recommend it to everyone and it works super well with ObjectBox. Both libraries work well together with our business objects. Retrofit fetches the fresh data from our servers and deserializes it into our business objects, which are then persisted with ObjectBox without any additional boilerplate code.

V: billiger.de has over 500.000 downloads and about 4 stars on average – how many daily users does the billiger.de app have? Do you have peak times?

A: Obviously holidays like Christmas and Easter are busier. During the day, early evenings get the most traffic – about 1000-2000 daily active users in the billiger.de app, 200 in our Pro-app, and iOS is similar. As I shared before, we get about 300k daily users on the website.

V: Thanks for sharing, and for talking with me today. Any last words?

A: Thank you for having me! I am looking forward to do more with ObjectBox and am very excited about what comes next!

Edge Computing Case Study with easyGOband: How ObjectBox enables compatibility from Android, iOS, and Raspbian to Linux

Edge Computing Case Study with easyGOband: How ObjectBox enables compatibility from Android, iOS, and Raspbian to Linux

Christian Bongardt

Christian Bongardt

CTO, easyGOband

In this case study, we talked with easyGOband CTO Christian Bongart about their implementation of ObjectBox in a cashless payment and access control solution, which spans across devices from Android to Raspberry Pi.

Alyssa – Hi Christian, thanks for joining me. Can you quickly introduce yourself and easyGOband?

Christian – Hi Alyssa, thanks. I am the co-founder of easyGOband and the CTO. We founded easyGOband back in 2017 as a product for music festivals. We introduced RFID wristbands as an access control system and as a payment solution for music festivals, since they have issues with connectivity.

Normally festivals only accept cash or they have a plastic token system. easyGOband, is a cashless system where you link your entry ticket over web application with your barcode. You can prepay your Near-Field Communication (NFC) wristband with lets say €20, for example. We activate and validate your ticket through the access control, and we hand you over the activated NFC wristband which would then contain the €20. Each seller then has an android device, which is like a small POS device, where you can enter the products you want to charge and the balance gets removed from the wrist band.

A – So, tell me a bit more about where the data sits.

C – The actual data is all stored in the wrist band and on the POS device. So it works in low connectivity environment because music festivals the massification of all the people together adds connectivity issues. Antennas can’t make it. Wifi is also a problem because of interference with audio devices, microphone and stuff like this – it is very hard to have a good connectivity. Other music festivals have invested online solutions with WiFi and they always have big problems with it because music festivals have 60,000 – 70,000 attendants and then the whole payment system goes down – it’s a catastrophe. That many people – no beer, that’s not good at a music event. And that’s how our company was initially born. We have been working in music festivals all over the world, in small music festivals, in bigger music festivals, in Argentina and Mexico, in Ecuador, and in Spain mostly. 

A – Are music festivals still your primary target group? 

C – Well, we noticed that this music festival business is not the best business we could pick up because it is very hard. Every year, you have to rearrange the agreement with the music festivals. It is quite hard for them to pay and then we noticed that our product could be well suited as well for hotels and resorts. And then we started to work with some large hotel customers, for example, in Spain we worked with Globalia which is the owner of Air Europa. Or Grupo Piñero, and in Cancun working with hotel chain called Oasis and now we are quite far into the hotel business and it’s working quite well.

A – Okay, that makes sense, hotels are a big market. So, tell me a bit about how you use ObjectBox, what does our solution solve for easyGOband?

C – The thing is, the low connectivity environment for us plays a pretty important role in our product. And that means we have to store a lot of data locally on the devices. For example, when the device makes a transaction, it tries to make the notification through the application server but if it can’t notify it then it just stores the data locally and tries again afterwards. For example, all transactions that are made during the event or hotel will store it locally on every single device so that device – as long as it has any connectivity during the operation even if the connectivity breaks at a single moment – can still see all the data: which transaction has been made, what’s the balance, what room is this wristband related to, what access group has it. We combine the data that we synchronize with the application server with ObjectBox, and the data that we can get real time with the NFC wristbands, we can operate 100% even if we are out of connectivity.

We first started with just SQLite. The thing is, we have to work on different devices. We have to work on Android devices, on Linux devices, we have to work on Windows PC and other devices. Something happened in the Android versions I think with the JDBC driver for SQLite and then we needed two different implementations. One with the native SQLite driver from Android and one with just the JDBC driver. That wasn’t ideal for us, more maintenance. After that we tried H2 but there were some issues with corrupting the DBs and stuff like this. And then I found ObjectBox and we give it a try and it worked quite well. And we are now using ObjectBox on all our devices – Windows PC, Linux PC, we are even using Raspberry Pi. 

We have to work on different devices. We have to work on Android devices, on Linux devices, we have to work on Windows PC and other devices.

A – Very cool. What’s the use case for the Raspberry Pi?

C – We have a system where we integrate with gatekeeper devices, like automatic doors, and we have one single Raspberry Pi for each gatekeeper. You scan the wrist band, the Raspberry Pi makes the connection with the gatekeeper and opens the door, for example. Or in general we use it for access control system for example, camping or resorts where you have access to the gym, it’s an electro magnetic door and we connect the Raspberry Pi to it and with a relay to open the door for it. And the Raspberry Pi is perfect for this. The newer Raspberry Pis run java based applications very well. Even with a user interface, we found it works well. ObjectBox is just perfect for us, since we can use it on all the different devices, one single implementation for all the repositories. For us, it’s perfect.

A – I believe it. So, in terms of implementation, was it fairly easy to do so across the different devices, were there any challenges?

C – It was quite easy. There was some smaller workarounds. For example we had to stick to number IDs, but the IDs on our system are UIDs. Because data is generated on the devices, we have to use UIDs, we cannot just use a non-sequential ID for this. Just some smaller workarounds – I think you are already working on different solutions that would fix our minor issues. Performance is very good. Implementation was done by one week or so, so yeah, it was quite good.

A – What are some big picture goals for your company, in terms of your road map, product road map?

C – Our next goal is a whole new product for hotels. Because, when we started doing business with hotels and we began seeing what our customers need. Now we have learned enough so we can do a single product for our hotel customers. We are going to do a web page and connect to peripherals over websockets. This means, for example, you as an operator in a hotel, as a receptionist, you login to your web panel, and there’s a button that says, let’s say – “Activate RFID Wristband” and we can connect to the device and execute the order that was initiated by the receptionist. The peripherals in Android devices, and in general would all be using ObjectBox to sync and store on the later. 

ObjectBox is just perfect for us, since we can use it on all the different devices, one single implementation for all the repositories.

A – Great that you are able to solve a specific customer pain point. What are you using as a synchronization solution, is that built in house?

C – Yes, yes. On the app server, we use MySQL, I think Aurora Serverless from Amazon and we use JOOQ, a query builder on top of it to build our queries and stuff like this, and then we have an SDK on the client size which uses ObjectBox to store the data on the device.

A – Okay, that’s interesting. Maybe, if you’re familiar or not, we have a synchronization solution for ObjectBox as well.

C – Yes, I’ve been looking into it. Looks good, we will definitely try it out when it’s released. We generate data on different devices and all devices need to sync data that is generated by all the other different devices. 

A – So, did you look at ObjectBox because of performance at all?

C – Not really, we were mostly having issues in terms of compatibility. That was the main reason we switched from SQLite or H2 to ObjectBox. It wasn’t only performance related. For example, with SQLite, the performance we were getting was okay. Because the data was stored on every single device, it’s not that much data volume that you have. For example, even at the largest music festival, maybe the biggest we make 1000 or 2000 transactions in minutes or at most. We don’t generate that much data. It was much more relevant with the different compatibility, on the different devices, and that code-base was usable on the most devices possible. That was very important for us. Obviously performance is also important – but it’s not the most important thing for us. 

A – Sure, so performance wasn’t necessarily a driver there. Anything else you would like to share about using ObjectBox?

CYou solved a lot of issues that we were facing. And the thing is, we are very happy that every time we have an issue, for example, we found an issue that we couldn’t use it on 32-bit windows devices, that was also almost a year ago, it was fixed within just a few weeks and that is very nice. We have never found such a good and quick response from 3rd party and free solution. Later on we had the issue with the Raspberry Pi where we couldn’t use it because of some issue with your continuous integration – also it was solved by you. That was amazing, I don’t know how to thank you. 

A – That’s great to hear. Our community is extremely important to us, it’s a large part of why we’re building ObjectBox. Thank you for sharing your case study, it will be nice to be able to give other users an idea of how ObjectBox can be implememented in so many different applications.

Industrial IoT (IIoT) edge solution for railway operators – a Kapsch ObjectBox Case Study

Industrial IoT (IIoT) edge solution for railway operators – a Kapsch ObjectBox Case Study

Executive Summary of IIoT Edge Case Study

The biggest challenge railway providers face today is digitization to increase operational efficiency. Issues like unscheduled downtimes or track repairs are very costly and have a strong impact on customer satisfaction. On top, railway providers constantly need to work on ensuring and improving passenger security. The problem behind these issues is that railway operators are often still lacking data when it comes to knowing what is happening on the tracks, in the tunnels and trains.

This case study looks at how Kapsch and ObjectBox collaborated on a Kapsch Industrial Internet of Things (IIoT) edge solution for the railway industry. The project enables railway operators to optimize their operational efficiency and asset management via rapid processing of real time mission critical data, ensuring extremely reliable asset operations and timely decision-making.

Kapsch

Founded in 1892, today this family-owned company headquartered in Vienna is a globally-operating technology group with offices and subsidiaries on all continents. The Kapsch Group focuses on peoples’ requirements in the fields of communication and mobility. With innovative products and solutions, Kapsch BusinessCom and Kapsch TrafficCom make a significant contribution to the digital transformation and a sustainable future in public and private transportation.

ObjectBox

ObjectBox makes real time data consistently accessible from sensor to server – including sensors (client), Android and iOS devices, IoT gateways, on-premise and cloud servers. ObjectBox is 10 times faster than any alternative, smaller than 1 MB and uniquely designed for IoT and Mobile settings.

Kapsch and ObjectBox

Kapsch is a longtime partner of railway operators and is thus helping the industry with digitization. By integrating ObjectBox’ database and synchronization solution into the Kapsch railway offering, Kapsch can provide superior speed and data continuity to their railway customers. This means critical data is available when needed and can be interacted with in real-time. This heightens operational efficiency and passenger security, because speed matters in that environment. It also decreases networking costs significantly. Last not least, keeping data locally as much as possible increases data security.

The challenge: Having data up to date – fast, reliably, across devices

As a long-term partner of railway providers across the world, Kapsch addresses their major pain points with its new IIoT solution. Central to optimizing railway providers’ operational efficiency and security is having real-time information about tracks and trains available when needed where needed.

Project requirements at a glance:

    • Performance and operation on all kinds of platforms from sensor to IoT gateway to server to iOS and Android devices
    • Reliable data synchronization between devices
    • Fast (near real-time) and network-connection-independent operation on all devices, meaning on the edge. Therefore, a superfast database across entities is required.
    • Possibility of opening the APIs for external developer projects in the future.

What we developed in the course of our digitalization initiative, was an end to end solution for IIoT, and with this we have an edge computing solution. We were looking for possible partners and one of them was ObjectBox. When we saw their synchronization methodology, we understood it was a perfect fit.

Jochen Nowotny

Vice President of Product Management, R&D, Delivery & Support, Kapsch

The project environment

Developed in a co-creation process with railway operators, the Kapsch IIoT-solution is uniquely tailored to the main needs and challenges of the railway industry: Passenger experience, operational efficiency and safety / security.

The Kapsch railway cross-platform solution applies mission-critical data to avoid costly downtimes and repairs, reducing maintenance times and delays. Thus, timetables can be kept more accurately up-to-date, making travelling a better experience for end users.

At the core of the solution lies the Kapsch mission-critical network. Another essential part of this solution is the storage, processing and delivery of data, so data is accessible where it is needed, when it is needed. Doing this efficiently provides a competitive edge to railway operators. Having the data needed to make decisions in real time – across any part of the railway network – improves operational management and the experience for both employees and customers.

ObjectBox’ solution

This is where ObjectBox comes in. ObjectBox offers a fast data storage and synchronization solution that works seamlessly across devices, from sensors to mobile (iOS and Android) to server to cloud. Because of its out-of-the-box synchronization solution, it also saves time to market and costs. On top, ObjectBox’ easy APIs could easily be extended to external developers. Therefore, Kapsch decided to implement and benchmark the startup’s solution.

 

How did Kapsch find ObjectBox’ solution?

Sourcing new innovative approaches is like finding a needle in the haystack. That is why Kapsch runs the later stage accelerator program Factory1. Factory1 focuses on piloting startup solutions at Kapsch. In a rigorous process, Kapsch’ top management and experts from around the world assess startups and define pilot projects together with them. In the final evaluation step, the startups pitch these pilots to the Kapsch board. After going through this thorough process, ObjectBox convinced the board of their solution’s great potential and usefulness for Kapsch.

The solution: A unique hardware/software stack with out-of-the-box synchronization

While the rigorous sourcing process already ensured a good paper and personal fit, in software projects it always comes down to the nitty-gritty details of the technology stack.

Working together – from technology fit to project-setup

The Kapsch project was developed mainly in Java for the operating systems centOS, Android and iOS. ObjectBox supports all platforms and languages used.

So the first step was to integrate the ObjectBox database for storing data, which meant replacing the persistence layer with ObjectBox. When exchanging a database (the data persistence layer) in an existing project, four cases can be distinguished:

SQL database with abstraction layerNoSQL database with abstraction layer
SQL database without abstraction layerNoSQL database without abstraction layer

In this project, a NoSQL database with an abstraction layer needed to be exchanged.

The second step was to synchronize data between IoT edge gateways and central servers.

Each IoT edge gateway (located along the tracks and in the trains) collects local sensor data and makes it accessible to local devices like smartphones, as well as centralized locations (e.g. on the headquarter’s servers). This setup allows high speed operations independent of the availability and quality of network connections.

This is not a simple case of “sending data one way” or “full replication”, rather a more sophisticated technology referred to as “data synchronization”. It is transactionally safe (aka ACID compliant), meaning no data is lost in transit. The network and gateway can go down any time – once everything is up again, data is safely transmitted. This data synchronization is a built-in feature of ObjectBox and therefore does not require any additional, costly software development efforts from Kapsch.

The third step was to compare ObjectBox to alternatives. Therefore, KPIs were defined and a benchmarking application was set up. The KPIs used in this evaluation were: internal project goals, ease of use, the performance of the database, the speed and efficiency of synchronization, and data consistency across devices.

Pilot project results

Together, ObjectBox and Kapsch achieved their goals and created a solution that adds a competitive edge.

“ObjectBox integration in our IIoT solution has enabled significant performances improvement … far beyond other databases. More, we’ve learn a lot on how to operate efficiently a database from the collaboration with ObjectBox team.”

Farid Bazizi

Head of R&D Development - Mission Critical Communication & Industrial IoT Technologies, Kapsch

Overall goals

More specifically, the following goals were met in the 3 month project:

  • There was a successful integration of the ObjectBox database, demonstrating how fast and easy it can be implemented. Because ObjectBox is flexible and easy to use, it can help ensure that will be usable and maintainable for 10+ years.
  • The performance benchmarks done in the project clearly showed that ObjectBox outperformed the alternative solution, which was based on Couchbase, with regards to speed (CRUD operations), as well as CPU and memory (RAM) usage.
  • Last but not least, ObjectBox Synchronization proved to be easy to implement, transferring data seamlessly and reliably between devices. Benchmarked against the existing solution, measurements showed that ObjectBox synchronized the data 61 to 94 times faster.

Benchmarks

Please note, the benchmarks done here are project-specific. The benchmarks simply compare the internal existing Kapsch implementation, which is based on Couchbase, to the ObjectBox implementation. Thus, they should be read as project-specific results only.

Database Performance (CRUD), higher is better

ObjectBox is faster on all basic database operations within this project. This means you can process more data faster, and run more complex applications, like artificial intelligence or machine learning applications on the device – and respond to incidents faster, before it gets costly or dangerous.

 

CPU & Memory Usage, lower is better

All hardware comes with limited CPU and memory resources. These resources are shared between all the apps running on the device. The less CPU and memory that the data storage solution and sync uses, the more is left for other uses.

This means it is possible to:

  • install smaller (and often cheaper) hardware
  • run more applications and do more complex computing (e.g. edge AI) on the existing hardware, allowing you to capitalize on existing infrastructure.

Both are huge cost factors in the project settings.

Synchronization speed

ObjectBox’ synchronization implementation was much faster than the alternative, processing 37,629 objects in one second, as compared to the 400 synchronized by the alternative. In practice this means that in the given setup, ObjectBox supports 10 times more clients (nodes) for every server. This translates to huge cost savings on hardware as servers are expensive and only one server is now required where before 10 were needed.

Startup-Corporate Collaboration: A win-win situation

As this case study shows, it pays off for projects to evaluate solutions independent from their provider’s company maturity level.

On the journey, both companies learned and benefited from each other’s expertise. Apart from solving the concrete technological challenges, the project yielded further positive side effects. Sebastian Opitz, Head of Controlling and ObjectBox’ project mentor, gives an example: “ObjectBox helped to quickly identify a faster way forward with a new technical solution. It would have taken us much longer doing it on our own and probably only would have been discovered much later.”

From the startup perspective, the collaboration gave ObjectBox access to new departments and new markets. “Kapsch has a deep market knowledge and a lot of experience with digitization projects. This experience helped ObjectBox to reach the next level”, concludes Vivien Dollinger, ObjectBox CEO.