IoT, Edge Computing, and Digitalization in Healthcare
The healthcare industry is experiencing an unprecedented surge in data generation, responsible for approximately 30% of the world’s total data volume. This vast and fast-growing amount of health data is the primary force behind the digital transformation of healthcare. Only through the adoption of advanced technologies can healthcare providers manage, analyze, and secure this information. While COVID-19 accelerated this shift, contributing to the explosion of health data, the ongoing demand for real-time patient insights, personalized treatment, and improved operational efficiency continues to drive the sector toward digitalization and AI. Simultaneously, growing data privacy concerns, increasing costs, and heavier regulatory requirements are challenging the use of cloud computing to manage this data. A megashift to Edge Computing and Edge AI is addressing these challenges, enabling a faster, safer, and more reliable digital healthcare infrastructure.
The digital healthcare market 2024 and beyond, a high-speed revolution
Prior to COVID, growth in digital health adoption stalled. However, digitalization in the healthcare industry has sky-rocketed since the start of the pandemic. Reflecting this market turnaround, followed by the rise of advanced digital tools like AI, recent years have been record-breaking for investments in healthcare companies. A trend that will continue in the next years, as analysts predict rapid growth across digital healthcare market sectors:
Drivers of growth and change in digital healthcare
Digital Healthcare Growth Driver 1: Growing Medical IoT Device Adoption
There will be a projected 40 billion IoT devices by 2030. IoMT devices already accounted for 30% of the entire IoT device market in 2020. Internet of Medical Things (IoMT) are hardware devices designed to process, collect, and/or transmit health–related data via a network. According to Gartner, 79% of healthcare providers are already using IoT in their processes, i.e. remote health monitoring via wearables, ingestible sensors, disinfection robots, or closed-loop insulin delivery systems. IoMT devices increase safety and efficiency in healthcare, and future technical applications, like smart ambulances or augmented reality glasses that assist during surgery, are limitless.
IoMT devices accounted for 30% of the IoT device market
Digital Healthcare Growth Driver 2: The Explosion of Health Data
Growing IoMT adoption is subsequently driving a rapid increase in the amount of collected health data. According to the RBC study, the healthcare industry is now responsible for approximately 30% of the world’s total data volume. By 2025, healthcare data is expected to continue growing at a 36% CAGR, outpacing data volumes from sectors like manufacturing, financial services, and media. Big health data sets are being used to revolutionize healthcare, bringing new insights into fields like oncology, and improving patient experience, care, and diagnosis. According to the Journal of Big Data: “taken together, big data will facilitate healthcare by introducing prediction of epidemics (in relation to population health), providing early warnings of disease conditions, and helping in the discovery of novel biomarkers and intelligent therapeutic intervention strategies for an improved quality of life.” In fact, the healthcare analytics market is projected to reach $129.7 billion by 2028, growing at a 23.5% CAGR​. This growth is driven by the need for real-time data processing, personalized medicine, and predictive analytics to manage chronic conditions and optimize hospital operations.
Healthcare data occupies ~30% of the world’s total data volume
Digital Healthcare Growth Driver 3: Artificial Intelligence
The increase in healthcare data opens up new opportunities and challenges to apply advanced technologies like big data analytics and artificial intelligence (AI) to improve healthcare delivery, patient outcomes, and operational efficiency. For instance, AI is being used to analyze medical imaging data, identify patterns in electronic health records, and predict patient outcomes, contributing to improved patient care. By 2026, AI is projected to save the global healthcare industry over $150 billion annually, by answering “20 percent of unmet clinical demand.”Â
Generative AI, which includes Large Language Models (LLMs) such as GPT-4, is playing a crucial role in this transformation. According to the survey from McKinsey, 70% of surveyed healthcare organizations are either currently testing or actively using generative AI tools for both clinical and administrative applications​. This is unsurprising, as LLM Chatbots can reduce waiting times by 80% in healthcare facilities. In diagnostics, LLMs are being applied to interpret electronic health records and assist with predictive analytics, leading to a reduction in hospital readmissions by up to 22%. Additionally, LLMs have helped improve medication adherence rates by 60%, demonstrating their impact on patient care quality​.
70% of healthcare organizations plan or use AI
Digital Healthcare Growth Driver 4: Artificial Intelligence
With the rise of IoMT and the boost in healthcare data, Edge Computing is becoming a key driver of healthcare digitalization. The majority of IoMT devices (55.3 %) currently operate on-premise rather than in the cloud, ensuring faster, more secure real-time data processing. This shift to Edge Computing enhances data privacy and reduces latency, which is critical in life-critical medical applications. Additionally, the development of Small Language Models (SLMs) for on-device AI (Edge AI) allows healthcare providers to deploy AI-powered solutions directly on medical devices. This helps with tasks like remote monitoring and diagnostics without the need for cloud connectivity, which is particularly beneficial in environments with limited internet access​.Â
As IoMT continues to evolve, Edge Computing will play an essential role in supporting healthcare’s increasing demand for real-time data processing. By 2025, it is projected that 75% of the healthcare data will be generated at the Edge, further driving the adoption of these technologies across the industry​.
75% of the healthcare data will be generated at the Edge in 2025
Digital Healthcare Growth Driver 5: Underlying Social Megatrends
The global population is growing; global life expectancy is rising. Accordingly, by 2030 the world needs more energy, more food, and more water. Explosive population growth in some areas versus declines in others contributes to shifts in economic power, resource allocation, societal habits, and norms. Many Western populations are aging rapidly. E.g. in America, the number of people 65+ is expected to nearly double to 72.1 million by 2034. Because the population is shrinking at the same time, elder care is a growing challenge and researchers are looking to robots to solve it.Â
Health megatrends focus not only on the prevention of disease, but also on the perception of wellness, and new forms of living and working. Over this decade more resources will be spent on health and longevity, leading to artificially and technologically enhanced human capabilities. More lifestyle-related disorders and diseases are expected to emerge in the future.
A focus on health and longevity will
lead to artificial & tech-enhanced
human capabilities
The Challenges of Healthtech
Along with more data, more devices, and more opportunities also comes more responsibility and more costs for healthcare providers.
Data Volume and Availability With the growing number of digital healthcare and medical devices, a dazzling volume of health data is created and collected across many different channels. It will be vital for the healthcare industry to reliably synchronize and combine data across devices and channels. Due to the sheer volume, reliable collection and analysis of this data is a major challenge. After it’s been processed, data needs to be available on demand, i.e. in emergency situations that require reliable, fast, available data.
Reliability, Privacy, and Data Security are extremely important in health technology; 70% of healthcare consumers are concerned about data privacy. Data use is often governed by increasingly strict national regulations, i.e. HIPAA (USA) and/or GDPR (Europe). With the number of cyber-attacks in the healthcare industry on the rise, healthcare professionals must be even more diligent about the storage and processing of data. In addition, healthtech must be extremely well vetted; failures can cost lives – typical “banana products”, which ripen with the customers, are a no-go.
IT Costs Medical devices contribute a large portion to healthcare budgets. However as data volumes grow, data costs will also become a relevant cost point. Sending all health data to the cloud to be stored and processed is not only slow and insecure, it is also extremely costly. To curb mobile network and cloud costs, much health data can be stored and processed at the edge, on local devices, with only necessary data being synced to a cloud or central server. By building resilient data architecture now, healthcare providers (e.g. hospitals, clinics, research centers) can avoid future costs and headaches.
Edge Computing is Integral to Data-driven Healthcare Ecosystems
With big data volumes, industries like healthcare need to seek out resilient information architectures to accommodate growing numbers of data and devices. To build resilient and secure digital infrastructure, healthcare providers will need to utilize both cloud computing and edge computing models, exploiting the strengths of both systems.
Cloud & Edge: What’s the Difference?
Cloud Computing information is sent to a centralized data center, to be stored, processed and sent back to the edge. This causes latency and a higher risk of data breaches. Centralized data is useful for large-scale data analysis and the distribution of data between i.e. hospitals and doctors’ offices.
Edge Computing Data is stored and processed on or near the device it was created on. Edge Computing works without an internet connection, and thus is reliable and robust in any scenario. It is ideal for time-sensitive data (real-time), and improved data privacy and security.
Edge Computing contributes to resilient and secure healthcare data systems
Transforming Healthcare with Edge Computing
Use Case: Secure and Up to Date Digital Record Keeping in Doctors Offices
For private doctors’ offices, embracing digitalization comes with different hurdles than larger healthcare providers. Often, offices do not keep a dedicated IT professional on staff, and must find digital solutions that serve their needs, while allowing them to comply with ever-increasing data regulations. As an industry used to legislative challenges, GPs know that sensitive patient data must be handled with care.
Solution providers serving private doctors’ offices are using edge databases to help keep patient data secure. An edge database allows private GPs to collect and store digital data locally. In newer practice setups, doctors use tablets, like iPads, throughout their practice to collect and track patient data, take notes and improve flexibility. This patient data should not be sent or stored in a central cloud server as this increases the risk of data breaches and opens up regulatory challenges. In a cloud-centered setup, the doctor also always needs to rely on a constant internet connection being available, making this also a matter of data availability
Accordingly, the patient data is stored locally, on the iPads, accessible only by the doctor treating the patient. Some of the data is synchronized to a local, in-office computer at the front desk for billing and administration. Other data is only synchronized for backup purposes and encrypted. Such a setup also allows synchronizing data between iPads, enabling doctors to share data in an instant.
Use Case: Connected Ambulances – Real-Time Edge Data from Home to Hospital
Between an incidence location and the hospital, a lot can happen. What if everything that happened in the ambulance was reliably and securely tracked and shared with the hospital, seamlessly? There are already trials using 5G technology to stream real-time data to hospitals, allowing ambulance medics to access patient data while in transit. Looking to the future, Edge Computing will enable digital healthcare applications to function in real-time and reliably anywhere and anytime, e.g. a moving ambulance, in the tunnel, or a remote area, enabling ambulance teams and doctors to give the best treatment instantly / on-site, while using available bandwidth and networks when available to seamlessly synchronize the relevant information to the relevant healthcare units, e.g. the next hospital. This will decrease friction, enhance operational processes, and improve time to treatment.
Digital Healthcare: Key Take-Aways
Digital healthcare is a fast-growing industry; more data and devices alongside new tech are empowering rapid advances. Finding ways to utilize growing healthcare data, while ensuring data privacy, security and availability are key challenges ahead for healthcare providers. The healthcare industry must find the right mix of technologies to manage this data, utilizing cloud for global data exchange and big data analytics, while embracing Edge Computing for it’s speed, security, and resilience.
Underutilized data plays a major role in health-tech innovation, data is the lifeline of future healthcare offerings; however, there is still much work to be done to improve the collection, management, and analysis of this data.
It’s all about data availability. Either in emergency situations, or simply to provide a smooth patient experience, data needs to be fast, reliable, and available: when you need it where you need it.
Edge computing alongside other developing technologies like 5G or Artificial Intelligence will empower a new and powerful digital healthcare ecosystem.
ObjectBox provides edge data software, to empower scalable and resilient digital innovation on the edge in healthcare, automotive, and manufacturing. ObjectBox’ edge database and data synchronization solution is 10x faster than any alternative, and empowers applications
that respond in real-time (low-latency), work offline without a connection to the cloud, reduce energy needs, keep data secure, and lower mobile network and cloud costs.
Sources
- https://www.marketsandmarkets.com/Market-Reports/iot-healthcare-market-160082804.html
- https://www.marketsandmarkets.com/Market-Reports/artificial-intelligence-healthcare-market-54679303.html
- https://www.grandviewresearch.com/press-release/global-mhealth-app-market
- https://www.grandviewresearch.com/industry-analysis/wearable-medical-devices-market
- https://www.fortunebusinessinsights.com/industry-reports/digital-health-market-100227