The Critical Role of Databases for Edge AI

The Critical Role of Databases for Edge AI

Edge AI vs. Cloud AI

Edge AI is where Edge Computing meets AI

What is Edge AI? Edge AI (also: “on-device AI”, “local AI”) brings artificial intelligence to applications at the network’s edge, such as mobile devices, IoT, and other embedded systems like, e.g., interactive kiosks. Edge AI combines AI with Edge Computing, a decentralized paradigm designed to bring computing as close as possible to where data is generated and utilized.

What is Cloud AI? As opposed to this, cloud AI refers to an architecture where applications rely on data and AI models hosted on distant cloud infrastructure. The cloud offers extensive storage and processing power.

An Edge for Edge AI: The Cloud 

 

Cloud AI to Edge AI architecture

Example: Edge-Cloud AI setup with a secure, two-way Data Sync architecture

Today, there is a broad spectrum of application architectures combining Edge Computing and Cloud Computing, and the same applies to AI. For example, “Apple Intelligence” performs many AI tasks directly on the phone (on-device AI) while sending more complex requests to a private, secure cloud. This approach combines the best of both worlds – with the cloud giving an edge to the local AI rather than the other way around. Let’s have a look at the advantages on-device AI brings to the table.

Benefits of Local AI on the Edge

  • Enhanced Privacy. Local data processing reduces the risk of breaches.
  • Faster Response Rates. Processing data locally cuts down travel time for data, speeding up responses.
  • Increased Availability. On-device processing makes apps fully offline-capable. Operations can continue smoothly during internet or data center disruptions.
  • Sustainability/costs. Keeping data where it is produced and used minimizes data transfers, cutting networking costs and reducing energy consumption—and with it, CO2 emissions.

Challenges of Local AI on the Edge

  • Data Storage and Processing: Local AI requires an on-device database that runs on a wide variety of edge devices (Mobile,IoT, Embedded) and performs complex tasks such as vector search locally on the device with minimal resource consumption.
  • Data Sync: It’s vital to keep data consistent across devices, necessitating robust bi-directional Data Sync solutions. Implementing such a solution oneself requires specialized tech talent, is non-trivial and time-consuming, and will be an ongoing maintenance factor. 
  • Small Language Models: Small Language Models (SLMs) like Phi-2 (Microsoft Research), TinyStories (HuggingFace), and Mini-Giants (arXiv) are efficient and resource-friendly but often need enhancement with local vector databases for better response accuracy. An on-device vector database allows on-device semantic search with private, contextual information, reducing latency while enabling faster and more relevant outputs. For complex queries requiring larger models, a database that works both on-device and in the cloud (or a large on-premise server) is perfect for scalability and flexibility in on-device AI applications.

On-device AI Use Cases

On-device AI is revolutionizing numerous sectors by enabling real-time data processing wherever and whenever it’s needed. It enhances security systems, improves customer experiences in retail, supports predictive maintenance in industrial environments, and facilitates immediate medical diagnostics. On-device AI is essential for personalizing in-car experiences, delivering reliable remote medical care, and powering personal AI assistants on mobile devices—always keeping user privacy intact.

Personalized In-Car Experience: Features like climate control, lighting, and entertainment can be adjusted dynamically in vehicles based on real-time inputs and user habits, improving comfort and satisfaction. Recent studies, such as one by MHP, emphasize the increasing consumer demand for these AI-enabled features. This demand is driven by a desire for smarter, more responsive vehicle technology.

Remote Care: In healthcare, on-device AI enables on-device data processing that’s crucial for swift diagnostics and treatment. This secure, offline-capable technology aligns with health regulations like HIPAA and boosts emergency response speeds and patient care quality.

Personal AI Assistants: Today’s personal AI assistants often depend on the cloud, raising privacy issues. However, some companies, including Apple, are shifting towards on-device processing for basic tasks and secure, anonymized cloud processing for more complex functions, enhancing user privacy.

ObjectBox for On-Device AI – an edge for everyone

Edge Cloud spectrum

The continuum from Edge to Cloud

ObjectBox supports AI applications from Edge to cloud. It stands out as the first on-device vector database, enabling powerful Edge AI on mobile, IoT, and other embedded devices with minimal hardware needs. It works offline and supports efficient, private AI applications with a seamless bi-directional Data Sync solution, completely on-premise, and optional integration with MongoDB for enhanced backend features and cloud AI.

 Interested in extending your AI to the edge? Let’s connect to explore how we can transform your applications.

MongoDB Realm & Device Sync alternatives – ObjectBox

MongoDB Realm & Device Sync alternatives – ObjectBox

With the recent deprecation of MongoDB Realm’s Device Sync feature, many developers need a reliable alternative for data synchronization in their applications. MongoDB announced that end-of-life for Atlas Data API, Custom HTTPS Endpoints, Atlas Device Sync (Realm Device Sync), Atlas Device SDKs (Realm), Atlas Data Lake (Preview) is only on the 30th of Sep 2025. And there are alternatives. For one, there is ObjectBox, a powerful and highly efficient Edge database with out-of-the-box Data Sync. We’re working on delivering all the functionalities and features you need and make ObjectBox a drop-in replacement for Mongo Device Sync asap. Please help us prioritize the most important things by filling out our questionnaire.

Now, let’s have a look at what ObjectBox can offer:

High-performance on-device database

ObjectBox is designed from the ground up for resource-efficiency and performance. It offers superfast database operations (CRUD: Create, Read, Update, Delete), often outperforming other database solutions, including Mongo Realm. However, we all know benchmarking is hard and it depends on the use case. So, check out our open-source benchmarks and make up your mind yourself. 

Migration with native language APIs

While we do hope that our intuitive native-language APIs (Swift, Java/Kotlin, C/C++, Flutter / Dart, Python) and setup are straightforward and quick for anyone to adapt, we are also listening to you and willing to invest in making the migration easier. Reach out to us with your feedback.

2024 CRUD performance ObjectBox Android

Cross-Platform Support

Like Mongo Realm, ObjectBox supports any POSIX system, including Android, iOS, Linux, Windows, and MacOS. This cross-platform compatibility ensures that you can maintain a consistent data layer across all your applications.

Efficient Sync Solution

ObjectBox offers its own Data Sync (ObjectBox Sync), which provides reliable and efficient data syncing between devices and servers. This feature is the one you are looking for if you relied on Realm’s Device Sync capabilities. ObjectBox was built with Data Sync in mind. We do have a cluster-mode that has been heavily tested for efficiency and reliability by industrial customers. We can handle millions of concurrent connections while providing realtime synchronization.

Offline-First Approach

ObjectBox embraces an offline-first architecture, allowing your apps to work seamlessly without an internet connection. Data is stored locally and can be synced between devices when offline or synced back to, e.g., a cloud once a connection becomes available again, ensuring a smooth user experience in various network conditions.

Active Development and Support

Unlike MongoDB Realm Device Sync (Atlas Device Sync), which is now deprecated, ObjectBox is actively developed and supported. This means you’ll benefit from regular updates, bug fixes, and new features, ensuring your data management solution remains robust and up-to-date.

Vector Search

We recently extended our database to become the very first on-device vector database enabling on-device AI (e.g. RAG, genAI, more efficient AI) on Mobile, IoT, and other embedded devices, see the vector search docs here. While extending our offering to serve MongoDB Realm customers wanting to migrate is the priority now, we’ll be extending Data Sync to synchronize vector embeddings next year too.

Conclusion

As MongoDB Realm’s Device Sync reaches its end of life, now is the perfect time to explore alternatives that cannot only replace but potentially enhance your app’s data management capabilities. To learn more about how ObjectBox can help you transition from Realm, visit the ObjectBox docs or schedule a call.