Flutter databases –  sqflite, hive, ObjectBox, and Moor

Flutter databases – sqflite, hive, ObjectBox, and Moor

Flutter is one of the most popular cross-platform mobile frameworks used by developers worldwide according to Statista, 2021. While the study also determined that the majority of mobile developers still used native tools,  Flutter is becoming a serious developer platform, and with its growth there is a growing need for Flutter databases.

A quick note on Flutter and Dart: Flutter is an open-source UI software development kit created by Google. Dart is the programming language in which developers code Flutter apps. Dart is an object-oriented programming language.

Flutter databases / Flutter Dart data persistence

While the database market is huge and dynamic,  there are only few options to choose from if you are a Flutter / Dart app developer. Before we dive into the Flutter database options, advantages and disadvantages, we’re taking a very quick look at databases to make sure, we share a common ground. 

What is a database?

A database is a piece of software that allows the storage and systematic use of digital information, in other words: data persistence. As opposed to mere caching, data is reliably stored and available to work with unless actively deleted. A database typically allows developers to store, access, search, update, query, and otherwise manipulate data in the database via a developer language or API. These types of operations are done within an application, in the background, typically hidden from end users. Many applications need a database as part of their technology stack. The most typical database operations are CRUD: Create, Read, Update, Delete.

What are the major types of databases?

There are many types of databases. For our purpose, the most important differentiations are non-relational (NoSQL) versus relational databases (SQL), cloud databases versus edge databases, and maybe embedded versus in-memory. However, databases can be further distinguished by additional criteria e.g. the data types they support, or the way they scale – and definitions can vary.

What is an ORM?

An Object relational Mapper (ORM) is not a database. We’re bringing this up mainly, because we see it confused often. It is a layer that sits on top of a database and makes it easier to use. This is typically especially relevant when the database is a relational database (SQL) and the programming language used is object-oriented. As noted above, Dart is an object-oriuented programming language.

The Flutter Dart data persistence landscape

At this point in time, the database landscape for Flutter Dart is still very limited. So, let us quickly introduce the current market players. Note: We are adding in Moor, because with that few player it is just one more option available and therefore, at this moment in time, should be part of the Flutter Dart data persistence landscapes, in our minds.

  • Firebase Realtime DB is a cloud-hosted database. It stores data as JSON and synchronizes it to connected clients.
  • Hive is a lightweight key-value database written in Dart for Flutter applications, inspired by Bitcask.
  • ObjectBox DB is a highly performant lightweight NoSQL database with an integrated Data Sync. It stores objects.
  • sqflite is a wrapper around SQLite, which is a relational database without direct support for Dart objects. 
  • Moor is a reactive persistence library for Flutter and Dart, built ontop of sqlite. 

 

What is the best Flutter Dart database?

This of course depends… Make up your own mind with the following comparison matrix as a starting point. Note: With very few options to choose from, the following overview is sometimes a bit comparing apples🍎 and pears🍐.

 

Data persistence Description Primary Model Location of data Language License Fun Fact
Firebase Realtime Database Mobile Backend as a Service (MBaaS) NoSQL Google Cloud Dart Proprietary acquired by Google in 2014
hive Light key-value DB for Flutter NoSQL local Dart Apache 2.0 Munich brew
ObjectBox High-performance Flutter DB NoSQL local, self-hosted server / cloud Dart Bindings are Apache 2.0 Munich-brew out-of-the-box data sync solution
sqflite SQLite plugin for Flutter relational local SQL SQLite is public domain, sqflite lib is MIT good old SQLite
Moor ORM for SQLite used on top of a relational DB local Dart SQLite is public domain, Moor lib is MIT Room spelled backwards

 

<body> <p>Diese Seite verwendet Frames. Frames werden von Ihrem Browser aber nicht unterstützt.</p> </body>

Flutter Database performance benchmarks

As with any benchmark, you need to take a look at the details. We take benchmarking very serious and strive to get accurate results. Therefore, we also always open source the benchmarking code and encourage you to check it out. If you note anything that does not even out in your oppinion, do let us know. We have a long history of updating and improving our benchmarks continually and are happy to take any recommendations.

Performance Benchmark Test Setup

We used an Android 10 device with a Kirin 980 CPU to run the benchmarks as a Flutter app. The app executed all operations (ops) in batches of 10.000 objects. Each batch formed a single transaction. We ran each test 50 times. The results you see in the diagram are averages across all runs. We set it up that way to ensure that neither the Virtual Machine warmup during the first run nor the garbage collections affect the overall result significantly. 

Flutter Databases CRUD Performance Results

Summary of the Flutter Dart DB Benchmarks

Hive and ObjectBox clearly outperform sqflite across all CRUD operations. The results show ObjectBox performing with up to 70 times the speedup for create and update operations. With regards to comparing Hive and ObjectBox, the results vary more. Hive can be faster at reading objects than ObjectBox. However, strictly speaking it’s not a fair comparison, because in Hive, the high read numbers result from Dart objects already cached in memory. If the objects are fetched using the async API from disk, the numbers drop by factor 1000.

As a cloud-based online database, Firebase is not really comparable. Local data persistence, an edge database, will typically always beat a cloud-based solutions with regards to response times. But of course cloud-based solutions have their own advantages and there may be reasons why you would choose to use Firebase over an edge database. It still may be a great option for you, depending on the use case.

Moor was not part of the benchmarking as it is an ORM. However, it is very likely it will perform similarly as sqflite, reflecting primarily the performance of SQLite.

Flutter and Data persistence landscape Conclusion

Flutter is becoming a serious developer platform and developers need a data persistence solution. There are currently only few databases supporting the Flutter community and 2022 will be an interesting year to watch where this is going. If you are interested to learn more about the database space, DB-engines and the database of databases are great starting points. Otherwise, go, check out the ObjectBox Flutter Database repo and share your thoughts with us – your feedback counts 🙂

Firebase alternatives for Data Storage and Data Sync

Firebase alternatives for Data Storage and Data Sync

Data Sync is a typical recurring and typically non-trivial developer challenge. Synchronizing data in offline/online settings, like for example across eventually connected devices, is simply hard. While JSON / REST is great, building Data Sync yourself is time-consuming, risky, and typically considered no fun. Therefore, today, we take a look at the out-of-the-box Data Sync market. If you are rather interested learning about Data Sync in general, check out this article about why data sync technology is more necessary than ever.

Introduction

One of the most well-known Data Sync solutions is Firebase. However, Firebase is purely cloud based and offers no support for local data storage ( as in “data persistence above caching”) and therefore offline usage. With a huge shift happening in computing from the cloud to the edge, offline-first approaches and Edge Computing are getting more and more important. Therefore, we’ve recently taken a comprehensive look at mobile database and edge database offerings on the market. But what options do Mobile and IoT developers working on the edge have for out-of-the-box Data Sync solutions? Very few. While there are more and more cloud-based Firebase alternatives springing up nearly daily (e.g. appwrite and supabase) forcing the user into a centralized cloud setup, there is almost nothing that supports offline Data Sync and / or persistent local data storage. As our focus is on offline / edge Data Sync and local storage, in the following we add all edge / offline Data Sync solutions we know of, but spare you the wealth of cloud options only adding the established ones.

Firebase

Firebase is a cloud backend service ((Mobile) Backend as a Service ((M)BaaS)) that enables developers to build mobile or web applications without needing to take care of the backend. This includes the data synchronization, scalability, network, infrastructure challenges etc. Indeed, Firebase, today, offers many different services (e.g. analytics, crashlytics) and goes well beyond Data Sync. We are looking at Firebase from the Data Sync perspective only. Firebase was one of the first Data Sync solutions available on the market together with Parse and Couchbase, which all started in 2011 (Couchbase through a merger of CouchOne and Membase). In 2014, Firebase was acquired by Google. Incidentally, the same year Parse was acquired by Facebook to be subsequently shut down, and Couchbase raised significant funding. All three are still in use today. 

Firebase Pros and Cons

In the following, we will first look at the advantages and disadvantages of Firebase. Then, we will compare Firebase with Firebase alternatives like Couchbase, Parse and ObjectBox in a comprehensive matrix.  

Firebase Advantages ++

Firebase Disadvantages —

Cloud based Purely cloud based
Google: large team that supports and maintains it; very low risk of the company failing; however, Google has a reputation of discontinuing products / services, so there is no guarantee Google: vendor lock-in (no migration tools prevents you from making your app portable), you cannot access your data as it is hosted on the Firebase server
Backend as a service (ease of use) Less flexibility: You cannot optimize the backend to match your app’s needs

The Firebase Realtime Database has its own advantages:

  • hosted, powered by Google
  • for pure online use cases rather fast
  • great if you do not have a strong DB background

The Firebase Realtime Database has its own drawbacks:

  • the whole DB is a huge JSON file
  • limited querying capabilities
  • no way to efficiently filter data
  • Easily disorganized, hard to navigate and search
Pay as you go, price scales with usage Cost insecurities, hard to impossible to predict
Less iOS support (stronger focus on Android) Less iOS support (stronger focus on Android)
Doesn’t work in countries that don’t allow Google
User privacy concerns***

 

*** “Firebase has been claimed to be used by Google to track users without their knowledge. On July 14, 2020, a lawsuit was filed accusing Google of (…) logging what the users are looking at in many types of apps, despite the user following Google’s own instructions to turn off the web and app activity collected by the company.” (https://en.wikipedia.org/wiki/Firebase)anced settings.

Firebase Advantages ++

Cloud based
– Google: large team that supports and maintains it; very low risk of the company failing; however, Google has a reputation of discontinuing products / services, so there is no guarantee
– Backend as a service (ease of use)
– The Firebase Real-time Database has its own advantages:
– Pay as you go, price scales with usage
– Less iOS support (stronger focus on Android)

Firebase Disadvantages —

– Purely cloud based
Google: vendor lock-in (no migration tools prevents you from making your app portable), you cannot access your data as it is hosted on the Firebase server
– Less flexibility: You cannot optimize the backend to match your app’s needs
The Firebase Real-time Database has its own drawbacks
the whole DB is a huge JSON file
limited querying capabilities
no way to efficiently filter data
Easily disorganized, hard to navigate and search
– Cost insecurities, hard – impossible to predict
– Less iOS support (stronger focus on Android)
– Doesn’t work in the countries that don’t allow Google
User privacy concerns: “Firebase has been claimed to be used by Google to track users without their knowledge. On July 14, 2020, a lawsuit was filed accusing Google of (…) logging what the users are looking at in many types of apps, despite the user following Google’s own instructions to turn off the web and app activity collected by the company.” (https://en.wikipedia.org/wiki/Firebase)

Firebase alternatives: A look at out-of-the-box data sync solutions

The majority of offerings for developers that handle Data Sync as defined here, are cloud-based and fall into the category of BaaS (can also be MBaaS (Mobile Backend as a Service) or PaaS (platform as a Service) or DBaaS (Database as a Service). This means that data synchronisation is only a specific part of the whole offering. 

Data Sync Solution comparison matrix – Firebase and its alternatives

Solution name Company Category Data Sync IoT / Mobile Database Type of DB Cloud OS / Platforms Languages License
Cloudant Sync
IBM (Cloudant was acquired in 2014) DBaaS
(Cloud DB and Cloud Sync)
Two-way
cloud data replication (called “sync”)
IoT
& Mobile
Cloud
database based on Couch DB
NoSQL;
distributed JSON document database
Cloud-based
replication to and from on-device data (CouchDB <> cloud service)
hosted
service
C#,
Java, JavaScript, Objective-C, PHP, Ruby
Proprietary
(CouchDB is Apache 2.0 and they integrate with several open source libraries)
Couchbase server &  Sync Gateway
Couchbase (a merger of Couch One and Membase) Cloud
DB and Cloud Sync
Sync
needs a Couchbase Server
IoT
& Mobile
Edge:
Couchbase Lite; Server: Couchbase
NoSQL;
document database
Always
needs Couchbase Server (originally Membase)
mainly
used as hosted service;
iOS, Android, .NET (Desktop/Server), .NET UWP, Xamarin
Swift,
Objective-C, Java (Android), Java (Non-Android), Kotlin, C#, JavaScript, C
Apache
2.0, delayed open source
Firebase**
Google (Firebase was acquired by Google in 2014) BaaS
(Cloud)
Cloud
Sync via Google servers
Mobile Cloud:
Firebase Realtime Database; Edge: Caching only (Firestore)
Document
store
hosted
only
APIS
for iOS & Android
JavaScript API
RESTful HTTP API
Java
JavaScript
Objective-C
proprietory
Mongo Realm Sync
MongoDB
(Realm was acquired in 2019)
Cloud
DB and Cloud Sync
Sync
(in Alpha); only via Mongo Cloud
IoT
& Mobile
Cloud:
MongoDB, Edge: Mongo Realm
MongoDB:
NoSQL document store; RealmDB: Embedded NoSQL DB
hosted
service
MongoDB:
Linux, OS X, Solaris, Windows
Mongo Realm DB:
Android, iOS
20+
languages, e.g. Java, C, C#, C++
Mongo
DB changed its license from open source (GNU) to MongoDB Inc.’s Server Side
Public License (SSPL) in 2018.
ObjectBox
Sync
ObjectBox DB
and Sync

Offline
Sync, on-premise Sync, Cloud Sync

p2p Sync is planned

IoT
& Mobile
ObjectBox Object-oriented
embedded NoSQL DB
Self-hosted
/ on-premise; hosted service upon request only
iOS,
Android, Linux, Windows, MacOS, any POSIX-system
C,
C++
Java
Kotlin
Swift
Go
Flutter / Dart
Python
DB:
Open source bindings, Apache 2.0, proprietary core
Parse
Originally
Parse, acquired by Facebook, closed down and open sourced, unmaintained
MBaaS
(Cloud)
Cloud
Sync, self-hosted or via a provider that offers Parse hosting
Mobile Both,
PostgreSQL* and MongoDB, can be used as a database for Parse
MongoDB:
NoSQL document store; PostgreSQL:
Only
Cloud, only self-hosted or via a provider that offers Parse hosting
Server: REST
API lets you interact with Parse Server from anything that can send an HTTP
request
open
source, BSD
Syncstudio
HandApps Cloud-based
sync between SQLite and MS SQL Server based in the MS Sync Framework
Sync Mobile Edge:
SQLite or MSSQL (including LocalDB or Express); Server:
Microsoft SQL
relational
/ SQL
SQL
Server; Sync / replication works via cloud only
Android
Java, Basic4Android, Windows Forms, UWP, Windows Mobile, Xamarin
proprietory,
4 licenses available: Community/Free, Subscription, Perpetual and Royalty
Free
Zumero
Zumero
LLC
Cloud-based
replication of SQL data for Mobile
Sync Mobile Edge:
SQLite; Server: Microsoft SQL
relational
/ SQL
SQL
Server; Sync / replication works via cloud only
Mobile
only (iOS, Android, Xamarin, PhoneGap)

proprietory,
annual license scaling with the number of devices

 

 

 

 

Notes: Microsoft Sync Framework (renamed Sync Framework Toolkit at some point) is a legacy open source product which MS no longer supports

* PostgreSQL vs Postgres
** There are many Cloud Sync alternatives to Firebase, we added the more prominent options and any service that also serves Edge Computing

Data Sync is no standardized term and though it seems to be in use by many big companies and most dvelopers will have a notion of what it is, the devil is in the details. So, we might have missed an important solution or taken an angle someone else would not agree with. Please feel free to let us know what to improve.

👉 Want to save this info for later? Watch the Firebase alternatives matrix on GitHub to find it easily wherever you need it.

ObjectBox DB and Sync – designed to keep data up to date across time and space

ObjectBox is a high performance NoSQL fully ACID-compliant edge database built from scratch for efficient data on and across restricted and occasionally connected devices, taking care of keeping data in sync reliably. ObjectBox developer tools are easy to use, quick to implement, and optimized for high-performance and frugal resource-use on edge devices running mobile, desktop, server, and IoT applications. ObjectBox helps developers to focus on what they love and build great applications without needing to take care of the boilerplate code for resilient connectivity, synchronizing data, and tedious DB optimizations. This cuts down initial implementation efforts, ongoing maintenance efforts, undesired problems, and data loss – therefore reducing costs and time to market tremendously. We are dedicated to bring joy and delight to Mobile and IoT application developers.

Why do we need Edge Computing for a sustainable future?

Why do we need Edge Computing for a sustainable future?

Centralized data centers consume a lot of energy, produce a lot of carbon emissions and cause significant electronic waste. While more data centers are moving towards green energy, an even more sustainable approach (alongside these so-called “green data centers” [1]) is to actually cut unnecessary cloud traffic, central computation and storage as much as possible by shifting computation to the edge. Edge Computing stores and uses data locally, on or near the device it was created on. This reduces the amount of traffic sent to the cloud and, at scale, has a huge impact on energy use and carbon emissions.

Why do Digitalization and IoT projects need to think about sustainability now?

Huge centralized data centres (cloud computing) have become a critical part of the infrastructure for a digitalized society. These large central cloud data centers produce a lot of carbon emissions, electric and electronic waste. [2] The share of global electricity used by data centres is already estimated to be around 1-3% [3] and data centers generate 2% of worldwide CO2 emissions (on par with the aviation industry). [4]

54% of which are caused by the cloud data centers of the big hyperscalers (Google, Amazon, Microsoft, Alibaba Cloud). [5] On top of this, providing and maintaining cloud infrastructure (manufacturing, shipping of hardware, buildings and lines) also consumes a huge amount of greenhouse gases [3] and produces a lot of abnormal waste (e.g. toxic coolants) at the end of life. [6]

sustainable edge computing

Bearing that in mind, the growth forecasts for digitization, IoT, and Mobile [7] are concerning. The steady increase in data processing, storage, and traffic in the future, comes with a huge electricity demand for this industry. [8] In fact, estimations expect the communications industry to use 20% of all the world’s electricity by 2025. [9]

sustainable edge computing

Shifting to green energy is a good step. However, a more effective and ultimately longer term solution requires looking at the current model of data storage, filtering, processing and transferal. By implementing Edge Computing, we can reduce the amount of useless and wasteful data traversing to and from the cloud as much as possible, thus reducing overall energy requirements in the long term.

What is Edge Computing?

Until recently 90% of enterprise data was sent to the cloud, but this is changing rapidly. In fact, this number is dropping to only 25 percent in the next 3 years according to Gartner. By then, most of the data will be stored and used locally, on the device it was created on, e.g. on smartphones, cars, trains, machines, watches. This is Edge Computing. Accordingly, edge devices need the same technology stack (just in a much smaller format) as a cloud server. This means: An operating system, a data storage / persistence layer (database), a networking layer, security functionalities etc. that run efficiently on restricted hardware.

As you can only use the devices’ resources, which can be pretty limited, inefficient applications can push a device to its limits, leading to slow response rates, crashes, and battery drain.

edge device architecture

EDGE DEVICE ARCHITECTURE

Edge Computing is much more than some simple data pre-processing, which takes advantage of only a small portion of the computing that is possible on the edge. An edge database is a prerequisite for meaningful Edge Computing. With an edge database, data can be stored and processed on the devices directly (the so called edge). Only useful data is sent to the server and saved there, reducing the networking traffic and computing power used in data centers tremendously, while also making use of the computing resources of devices which are already in use. This greatly reduces bandwidth and energy required by data centers. On top, edge computing also provides the flexibility to operate independent from an Internet connection, enables fast real time response rates, and cuts cloud costs.

Why is Edge Computing sustainable?

Edge Computing reduces network traffic and data center usage

With Edge Computing the amount of data traversing the network can be reduced greatly, freeing up bandwidth. Bandwidth is a measure of the quantity / size of data a network can transfer in a given time frame. Bandwidth is shared among users. Accordingly, the more data is supposed to be sent via the network at a given moment, the slower the network speed. Data on the edge is also much more likely to be useful and indeed used on the edge, in context of its environment. Instead of constantly sending data strems to the cloud, it therefore makes sense to work with the data on the edge and only send that data to the cloud that really is of use there (e.g. results, aggregated data etc.).

Edge computing is optimized for efficiency

Edge “data centres” are typically more efficient than cloud data centres. As described above, resources on edge devices are restricted. Therefore, and as opposed to cloud infrastructure, edge devices do not scale horizontally. That is one reason why every piece of the edge tech stack is – typically and ideally – highly optimized for resource efficiency. Any computing done more efficiently helps reduce energy consumption. Taking into account the huge number of devices already deployed , the worldwide impact of reducing ressource use for the same operations is significant.

With Edge Computing you can use existing hardware

There is a realm of edge devices already deployed that is currently underused. Many existing devices are capable of data pesistence, and some even for fairly complex computing. When these devices – instead – send all of their data to the cloud, an opportunity is lost. Edge Computing enables companies to use existing hardware and infrastructure (retrofitting),  taking advantage of the available computing power. If these devices continue to be underused, we will need to build bigger and bigger central data centers, simultaneously burdening existing network infrastructure and reducing bandwidth for senselessly sending everything to the cloud.

Cloud versus Edge: an Example

Today, many projects are built based on cloud computing. Especially in first prototypes or pilots, cloud computing offers an easy and fast start. However, with scale, cloud computing often becomes too slow, expensive, and unreliable. In a typical cloud setup, data is gathered on edge devices and forwarded to the cloud for computation and storage. Often a computed result is sent back. In this design, the edge devices are dumb devices that are dependant upon a working internet connection and a working cloud server; they do not have any intelligence or logic of their own. In a smart home cloud example, data would be sent from devices in the home, e.g. a thermostat, the door, the TV etc. to the cloud, where it is saved and used.

Cloud vs Edge

If the user would want to make changes via a cloud-based mobile app when in the house, the changes would be send to the cloud, changed there and then from there be sent to the devices. When the Internet connection is down or the server is not working, the application will not work.

With Edge Computing, data stays where it is produced, used and where it belongs – without traversing the network unnecessarily. This way, cloud infrastructure needs are reduced in three ways: Firstly, less network traffic, secondly, less central storage and thirdly less computational power. Rather, edge computing makes use of all the capable hardware already deployed in the world. E.g. in a smart home, all the data could stay within the house and be used on site. Only the small part of the data truly needed accessible from anywhere would be synchronized to the cloud.

Cloud vs Edge

Take for example a thermostat in such a home setting: it might produce 1000s of temperature data points per minute. However, minimal changes typically do not matter and data updates aren’t necessary every millisecond. On top, you really do not need all this data in the cloud and accessible from anywhere.

With Edge Computing, this data can stay on the edge and be used within the smart home as needed. Edge Computing enables the smart home to work fast, efficiently, and autonomous from a working internet connection. In addition, the smart home owner can keep the private data to him/herself and is less vulnerable to hacker attacks. 

How does ObjectBox make Edge Computing even more sustainable?

ObjectBox improves the sustainability of Edge Computing with high performance and efficiency: our 10X speed advantage translates into less use of CPU and battery / electricity. With ObjectBox, devices compute 10 times as much data with equivalent power. Due to the small size and efficiency, ObjectBox runs on restricted devices allowing application developers to utilize existing hardware longer and/or to do more instead on existing infrastructure / hardware.

Alongside the performance and size advantages, ObjectBox’ Sync solution takes care of making data available where needed when needed. It allows synchronization in an offline setting and / or to the cloud. Based on efficient syncing principles, ObjectBox Sync aims to reduce unnecessary data traffic as much as possible and is therefore perfectly suited for efficient, useful, and sustainable Edge Computing. Even when syncing the same amount of data, ObjectBox Sync reduces the bandwidth needed and thus cloud networking usage, which incidentally reduces cloud costs.

ObjectBox’ Time Series feature, provides users an intuitive dashboard to see patterns behind the data, further helping users to track thousands of data points/second in real-time.

How Edge Computing enables new use cases that help make the world more sustainable

As mentioned above, there are a variety of IoT applications that help reduce waste of all kinds. These applications can have a huge impact on creating a more sustainable world, assuming the applications themselves are sustainable. Three powerful examples to demonstrate the huge impact IoT applications can have on the world:

1) Smart City Lighting: Chicago has implemented a system which allows them to save approx. 10 million USD / year and London estimates it can save up to 70% of current electricity use and costs as well as maintenance costs through smart public lighting systems. [10]

2) Reducing Food Waste: From farm to kitchen, IoT applications can help to reduce food waste across the food chain. Sensors used to monitor the cold chain, from field to supermarket, can ensure that food maintains a certain temperature, thus guaranteeing that products remain food safe and fresh longer, reducing food waste.

3) Reduce Water Waste: Many homes and commercial building landscapes are still watered manually or on a set schedule. This is an inexact method of watering, which does not take into account weather, soil moistness, or the water levels needed by the plant. Using smart IoT water management solution, landscape irrigation can be reduced, saving water and improving landscape health.

These positive effects are all the more powerful when the IoT applications themselves are sustainable. 

The benefits of cloud computing are broad and powerful, however there are costs to this technology. A combination of green data centers and Edge Computing helps to resolve these often unseen costs. With Edge Computing we can reduce the unnecessary use of bandwidth and server capacity (which comes down to infrastructure, electricity and physical space) while simultaneously taking advantage of underused device resources. ObjectBox amplifies these benefits, with high performance on small devices and efficient data synchronization – making edge computing an even more sustainable solution.

Why Edge Computing is More Relevant in 2021 Than Ever

Why Edge Computing is More Relevant in 2021 Than Ever

The world has been forced to digitize more quickly and to a greater extent in 2020 and 2021. COVID has created the need to remodel how work, socializing, production, entertainment, and supply chains function. Despite decades of digitization efforts, with the pandemic upon us, digitization challenges have become transparent. Many companies and countries realize now, they have fallen behind. And those that have not yet digitized were hit hardest by the pandemic. [1] With people leaning heavily on online digital solutions, internet infrastructure is at its capacity limit. [2] Accordingly, users are seeing broadband speeds drop by as much as half. [3] In Europe, governments even requested to reduce the quality of Netflix, Amazon Prime, Youtube and other streaming services to improve network speed. [4]

These challenges demonstrate the growing need for an alternative to cloud computing. Cloud computing is an inherently centralized computing paradigm. Edge Computing is a decentralized topology that is based on keeping data local, at the ‘edge’ of the network, as close to the source as possible. Edge Computing is ideal for applications that are data-intensive, have high latency-requirements, or need to work offline, independant from a cloud connection. Using data on the edge, directly on or near the source of the data, not only increases the efficiency and speed of data use, but it reduces unecessary network burden and data traffic waste.

Coronavirus accelerates the need to digitize

It was clear even before the outbreak that internet infrastructure was struggling to keep up with growing data volumes. However, the pandemic has made broadband limitations more apparent to everyday users.

Projections estimate that by 2025 there will be 20 million IoT devices [5] and 1.7MB of data created per second per person. It is slow, expensive, and wasteful to send all of this data to the cloud for storage and processing. This practice overburdens bandwidth and data center infrastructure. It makes projects expensive and unsustainable. Working with the data, locally, on the edge, where it was produced and is used, is more efficient than sending everything to the cloud and back. It brings reduced latency, reduced cloud usage and costs, independence from a network connection, more secure data and heightened data privacy – and even reduces CO2. Indeed, prior to the pandemic, edge computing was on the strategic roadmap for over 50% of mobility decision makers. [6]

As the world begins to recover from the coronavirus pandemic, digitization efforts will no doubt increase. We will see intelligent systems implemented across industries and value chains, accelerating innovation and alongside: data volumes and subsequent strain on network bandwidth. Edge computing is a key technology to ensure that this digitalization is both scalable and sustainable.  

Edge Computing takes the ‘edge’ off bandwidth strain

what is edge computing?

What is Edge Computing?

With edge computing, data is stored and used on devices at the “edge” of the network – away from centralized cloud servers. Computing on the edge means that data is stored and used locally, on the device, e.g. a smart phone or IoT device. Edge computing delivers faster decision making, local and offline data processing, as well as reduced data transfer to the cloud (e.g. filtered, computed, extra- or interpolated data), which saves both bandwidth and cloud storage costs. 

The Edge complements the Cloud

Although some might set cloud and edge in competition, the reality is that edge computing and cloud computing are both useful and relevant technologies. Both have different strengths and ideal use cases. Together they can provide the best of both worlds: decentralized local storage and processing, making efficient use of hardware on the edge and central storing and processing of some data, enabling additional centralized insights, data backups (redundancy), and remote access. To combine the best of both worlds, relevant and useful data must be synchronized between the edge and cloud in a smart and efficient way.  

Edge computing is an ideal technology to reduce the strain on data centers, so those functions that need cloud connection have adequate bandwidth; while those use cases that benefit from reduced latency and offline functionality are optimized on the edge.

The Edge: interface between the Physical and the Digital World

Edge devices handle the interface between the physical world and the cloud, enabling a whole set of new use cases. “Data-driven experiences are rich, immersive and immediate. But they’re also delay-intolerant data hogs”. [8] And therefore need to happen locally, on the edge. We may see edge computing enabling new forms of remote engagement [9], particularly in a post-corona environment.

Edge devices can be anything from a thermostat or small sensor to a fridge or mobile phone or car – and they are part of our direct physical world and use data from their local environment to enable new use cases. Think self-stocking fridges, self-driving cars, drone-delivered pizzas. In the same way, Edge Computing is the key to the first real world search engine. I am waiting for it every day: “Hey Google, where are my keys?” Within a location like a house, the concepts and technologies to enable such a real-world search engine are all clear and available – it is just a matter of time and ongoing digitization. The basis will need to be a fast and sustainable edge infrastructure. 

Sustainability on the Edge

Centralized data centers consume a lot of energy, produce a lot of carbon emissions and cause significant electronic waste. [10] While data centers are seeing a positive trend towards using green data centers, an even more sustainable approach is to cut unnecessary cloud traffic, central computation and storage as much as possible by shifting computation to the edge. Edge Computing strategies that harness the power of already deployed available hardware (like e.g. smartphones, machines, desktops, gateways) make the solution even more sustainable.

sustainability on the edge

Intelligent Edge: AI and Edge advance hand in hand

The growth of Artificial Intelligence (AI) and the Edge will go hand in hand. As more and more data is generated at the edge of the network, there will be a greater demand for intelligent data processing and structured optimization to reduce raw data loads going to the cloud. [11] Edge AI will have the power to work with data on local devices, keeping data streams more useful and usable. In the near future, Machine Learning applications will have the ability to learn and create unique, localized, decentralized insights on the edge – based on local inputs.

“With Edge AI, personalization features that we want from the app can be achieved on device. Transferring data over networks and into cloud-based servers allows for latency. At each endpoint, there are security risks involved in the data transfer”. [12] Which is part of the reason why the Edge AI Software market is forecasted to reach 1.12 trillion dollars volume by 2023. The development of AI accelerators, which improve model inferencing on the edge, namely from NVIDIA, Intel and Google are helping to make AI on the edge more viable. [13] A fast edge database is a necessary base technology to enable more AI on the edge. 

Edge Computing – an answer to Data Privacy concerns and a need for Resilience

As data collection grows in both breadth and depth, there is a stronger need for data privacy and security. Edge computing is one way to tackle this challenge: keeping data where it is produced, locally, makes data ownership clear and data less likely to be attacked and compromised. If compromised, the data compromised is clearly defined, making notification and subsequent actions manageable. ObjectBox, in its core and as an edge technology, is designed to keep data private, on those devices it was created on, and only share select data as needed. 

The more our private and working lives as well as the larger economy depend on digitalization, the more important it is that systems, underlying computing paradigms as well as networks have strong resilience and security. In computer networking, resilience is the ability to “provide and maintain an acceptable level of service in the face of faults and challenges to normal operation.” [14]

ing initEdge Computing shifts computer workloads – the collection, processing, and storage of data – from central locations (like the cloud) to the edge of the networks to many individual devices such as cell phones. Accordingly, any strain is distributed to many devices. Therefore, the risk of a total breakdown is reduced: If one device does not work anymore, the rest is still working. Depending on the setup, the individual devices could even compensate for devices that have a problem.

The same applies to security risks: Even if data from one device is compromised, all other data sets are still safe; the loss is thus very limited and clear.  Overall, as a complement to the cloud, edge computing provides improved strength and security in local networks around the world. These local infrastructures can relieve the pressure on the existing complex dependencies, and in turn make the wider system more resilient and flexible. With Edge Computing crisis response can therefore in all likelihood be faster, better informed, and more effective. [15]

Why Corona-Tracking-Apps need to work on the edge

There was initially quite some debate about taking a centralized versus decentralized approach to Corona-Tracking-Apps. [16] Many people were worried about their data. Edge Computing – storing most parts of the data locally, on the user’s device – is a great way to avoid unnecessary data sharing and keep data ownership clear. At the same time, data is by and large much more secure and less likely to be attacked and hacked, as the data to be gained is very reduced. An intelligent syncing mechanism like ObjectBox Sync ensures that the data which needs to be shared, is shared in a selective, transparent and secure way.

The next few years will see big cultural changes in both our personal and professional lives – a portion of those changes will be driven by increased digitalization. Edge computing is an important paradigm to ensure these changes are sustainable, scalable, and secure. Ultimately, we have the chance to rise from this crisis with new insights, new innovation, and a more sustainable future.

1. https://www.netzoekonom.de/2020/04/11/die-oekonomie-nach-corona-digitalisierung-und-automatisierung-in-hoechstgeschwindigkeit/
2. https://www.cnet.com/news/coronavirus-has-made-peak-internet-usage-into-the-new-normal/
3. https://www.nytimes.com/2020/03/26/business/coronavirus-internet-traffic-speed.html
4. https://www.theverge.com/2020/3/27/21195358/streaming-netflix-disney-hbo-now-youtube-twitch-amazon-prime-video-coronavirus-broadband-network
5. https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
6. https://www.forbes.com/sites/forrester/2019/12/02/predictions-2020-edge-computing-makes-the-leap/#1aba50104201
7. https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders/
8. https://www.iotworldtoday.com/2020/03/19/ai-at-the-edge-still-mostly-consumer-not-enterprise-market/
9. https://www.accenture.com/us-en/insights/high-tech/edge-processing-remote-viewership
10. https://link.springer.com/article/10.1007/s12053-019-09833-8
11. https://www.forbes.com/sites/cognitiveworld/2020/04/16/edge-ai-is-the-future-intel-and-udacity-are-teaming-up-to-train-developers/#232c8fab68f2
12. https://www.forbes.com/sites/cognitiveworld/2020/04/16/edge-ai-is-the-future-intel-and-udacity-are-teaming-up-to-train-developers/#232c8fab68f2
13. https://www.forbes.com/sites/janakirammsv/2019/07/15/how-ai-accelerators-are-changing-the-face-of-edge-computing/#2c1304ce674f
14. https://en.wikipedia.org/wiki/Resilience_(network)
15. https://www.coindesk.com/how-edge-computing-can-make-us-more-resilient-in-a-crisis
16. https://venturebeat.com/2020/04/13/what-privacy-preserving-coronavirus-tracing-apps-need-to-succeed/

Digital Healthcare – Market, projections, and trends

Digital Healthcare – Market, projections, and trends

If you work in the healthcare industry, you are likely familiar with some uses of IoT devices. According to Gartner (2020), 79% of healthcare providers are already successfully employing IoT solutions.[1] However, this is just the beginning. While before COVID-19, the growth of digital health adoption had stalled [2], the market is picking up speed again. Indeed, Q3 2020 was a record year for investments in healthcare companies [3] and the market expects rising investments in healthtech for next years [4]. Today, underutilized data plays a major role in healthtech innovation [17] and the growing importance of healthcare data for future offerings is evident [5]. Take a look how analyts from Gartner to Accenture and Forrester expect the market to grow:

The digital healthcare market 2020 and beyond

digital-healthcare-market-trends-2020-edge-iot
  • Analysts expect Artificial Intelligence in healthcare to reach $6.6 billion by 2021 (with a 40% CAGR). [6]
  • The Internet of Medical Things (IoMT) market is expected to cross $136 billion by 2021. [11
  • Analysts expect the healthcare wearable market to have a market volume of $27 billion by 2023 (with a 27.9% CAGR). [7]
  • The IoT industry is projected to be worth $6.2 trillion by 2025 and around 30% of that market (or about $167 billion) will come from healthcare. [8]
  • Analysts expect the global Medical Health Apps market to grow to $236 billion by 2026, reflecting a shift towards value based care. [9]
  • The projected global digital health market is estimated to reach $510.4 billion by 2026 (with a 29% CAGR). [10]

The Healthcare industry has been struggling with shrinking payments and cost optimizations for years. [18] Fueled by the need to adopt in light of the COVID pandemic, digital technologies bring extensive changes quickly to this struggling industry now. Data is moving to the center of this changing ecosystem and harbors both risks and opportunities in a new dimension. [21] The basic architecture and infrastructure to have the data reliably, securely and quickly available where they are needed will be decisive for the success or failure of digital healthcare solutions. [17] [21]

We recommend keeping an eye on the following five trends

The 5 biggest digital healthcare trends to watch

AI-health-growth-market-tech

Artificial Intelligence (AI)  

Accenture estimates that AI applications can help save up to $150 billion annually for the US healthcare economy by 2026. [6] Therefore, it is no wonder that the healthcare sector is expected to be among the top five industries investing in AI in the next couple of years. [19] The top three greatest near-term value AI applications in healthcare are: 1. robot-assisted surgery ($40 billion), 2. virtual nursing assistants ($20 billion), and 3. administrative workflow assistance ($18 billion). 

big-data-health-analytics

Big Data / Analytics

The goal of big data analytic solutions is to improve the quality of patient care and the overall healthcare ecosystem. The global healthcare Big Data Analytics market is predicted to reach $39 billion by 2025. [12] The main areas of growth are medical data generation in the form of Electronic Health Records (EHR), biometric data, sensors data. 

internet-of-medical-things-digital-healthtech

Internet of Medical Things (IoMT)

IoMT is expected to grow to $508.8 billion by 2027. [13] According to Gartner, 79% of healthcare providers are already using IoT in their processes. [27] During COVID, IoMT devices have been used to increase safety and efficiency in healthcare, i.e. providing and automating clinical assistance and treatment to the infected patient, to lessen the burden of specialists. Future applications, like augmented reality glasses that assist during surgery, are leading to a focus more on IoMT-centric investments. [14]

telemedicine-virtual-healthcare-online

Telehealth / Telemedicine

Telecommunications technology enables doctors to diagnose and treat patients remotely. Consumer adoption of telehealth has skyrocketed in 2020 and McKinsey believes that up to $250 billion of current US healthcare spend could potentially be virtualized. [25] Also, many patients view telehealth offerings more favorable and – having made good experiences – are planning to continue using telehealth in the future. [26] Not astonishingly, telemedicine stocks also grow rapidly. [14]

edge-computing-hospital-clinic-offline

Edge Computing

Edge computing is a technological megashift happening in computing. [23] Instead of pushing data to the cloud to be computed, processing is done locally, on ‘the edge’. [15] Edge Computing is one of the key technologies to make healthcare more connected, secure, and efficient. [22]  Indeed, the digital healthcare ecosystem of the future depends on an infrastructure layer that makes health data accessible when needed where needed (data liquidity). [21] Accordingly, IDC expects the worldwide edge computing market to reach $250.6 billion in 2024 with a (12.5% CAGR) [24with healthcare identified as one of the leading industries that will adopt edge computing. [16

The healthcare market is in the middle of a fast digital transformation process. Drivers such as COVID,  growing IoT adoption in healthcare, and underlying social mega-trends are pushing digital healthcare growth to new heights. Therefore, the digital healthcare industry faces many challenges, both technical and regulatory. At the same time the healthcare market is offered a wealth of opportunities.

References

[1] https://www.computerworld.com/article/3529427/how-iot-is-becoming-the-pulse-of-healthcare.html / https://www.gartner.com/en/documents/3970072
[2] https://www.accenture.com/us-en/insights/health/leaders-make-recent-digital-health-gains-last
[3] https://sifted.eu/articles/europes-healthtech-industry-2020/
[4] https://www.mobihealthnews.com/news/emea/health-tech-investments-will-continue-rise-2020-according-silicon-valley-bank
[5] https://news.crunchbase.com/news/for-health-tech-startups-data-is-their-lifeline-now-more-than-ever/
[6] https://www.accenture.com/us-en/insight-artificial-intelligence-healthcare%C2%A0
[7] https://www.grandviewresearch.com/industry-analysis/wearable-medical-devices-market
[8] https://www.marketsandmarkets.com/PressReleases/iot-healthcare.asp
[9] https://www.grandviewresearch.com/press-release/global-mhealth-app-market
[10] https://www.globenewswire.com/news-release/2020/05/23/2037920/0/en/Global-Digital-Health-Market-was-Valued-at-USD-111-4-billion-in-2019-and-is-Expected-to-Reach-USD-510-4-billion-by-2025-Observing-a-CAGR-of-29-0-during-2020-2025-VynZ-Research.html
[11] https://www2.stardust-testing.com/en/the-digital-transformation-trends-and-challenges-in-healthcare
[12] https://www.prnewswire.com/news-releases/healthcare-analytics-market-size-to-reach-usd-40-781-billion-by-2025–cagr-of-23-55—valuates-reports-301041851.html#:~:text=Healthcare%20Big%20Data%20Analytics%20Market,13.6%25%20during%202019%2D2025 
[13] https://www.globenewswire.com/news-release/2020/11/25/2133473/0/en/Global-Digital-Health-Market-Report-2020-Market-is-Expected-to-Witness-a-37-1-Spike-in-Growth-in-2021-and-will-Continue-to-Grow-and-Reach-US-508-8-Billion-by-2027.html
[14] https://www.nasdaq.com/articles/iomt-meets-new-healthcare-needs%3A-3-medtech-trends-to-watch-2020-11-27
[15] https://go.forrester.com/blogs/predictions-2021-technology-diversity-drives-iot-growth/
[16] https://www.prnewswire.com/news-releases/state-of-the-edge-forecasts-edge-computing-infrastructure-marketworth-700-billion-by-2028-300969120.html
[17] https://news.crunchbase.com/news/for-health-tech-startups-data-is-their-lifeline-now-more-than-ever/ 
[18] https://www.gartner.com/en/newsroom/press-releases/2020-05-21-gartner-says-50-percent-of-us-healthcare-providers-will-invest-in-rpa-in-the-next-three-years
[19] https://www.idc.com/getdoc.jsp?containerId=prUS46794720 
[20] https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/the-great-acceleration-in-healthcare-six-trends-to-heed 
[21] https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/the-next-wave-of-healthcare-innovation-the-evolution-of-ecosystems 
[22] https://www.cbinsights.com/research/internet-of-medical-things-5g-edge-computing-changing-healthcare/
[23] https://siliconangle.com/2020/12/08/future-state-edge-computing/
[24] https://www.idc.com/getdoc.jsp?containerId=prUS46878020
[25] https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/telehealth-a-quarter-trillion-dollar-post-covid-19-reality
[26] https://go.forrester.com/blogs/will-virtual-care-stand-the-test-of-time-if-youre-asking-the-question-its-time-to-catch-up/
[27] https://www.computerworld.com/article/3529427/how-iot-is-becoming-the-pulse-of-healthcare.html