fbpx

The internet of things (IoT) has a huge potential to reduce carbon emissions, as it enables new ways of operating, living, and working [1] that are more efficient and sustainable. However, IoT’s huge and growing electricity demands are a challenge. This demand is due primarily to the transmission and storage of data in cloud data centers. [2] While data center efficiency and the use of green energy will reduce the CO2 emissions needed for this practice, it is not addressing the problem directly. [3

iot-data-cloud-energy-waste

With ObjectBox, we address this unseen and fast-growing CO2 source at the root: ObjectBox empowers edge computing, reducing the volume of data transmitted to central data storage, while at the same time, heightening data transmission and storage efficiency. [4] We’ve talked before about how edge computing is necessary for a sustainable future, below we dive into the numbers a bit deeper. TLRD: ObjectBox enables companies to cut the power consumption of their IoT applications, and thus their emissions, by 50 – 90%. For 2025, the potential impact of ObjectBox is a carbon emission reduction of 594 million metric tons (see calculations below).

How ObjectBox’ Technology Reduces Overall Data Transmission

 ObjectBox reduces data transmission in two ways: 1. ObjectBox reduces the need for data transmission, 2. ObjectBox makes data transmission more efficient. ObjectBox’ database solution allows companies to build products that store and process data on edge devices and work with that data offline (as well as online). This

not only improves performance and customer experience, it also reduces the overall volume of data that is being sent to the cloud, and thus the energy needed to transfer the data as well as store it in the cloud. ObjectBox’ Synchronization solution makes it easy for companies to transmit only the data that needs to be transmitted through 1) selective two-way syncing and 2) differential delta syncing. Synchronizing select data reduces the energy required for unnecessarily transmitting all data to the cloud.

We have demonstrated in exemplary case studies that ObjectBox can reduce total data transmissions by 70-90%, depending on the case. There will, however, typically be value in transmitting some parts of data to a central data center (cloud); ObjectBox Sync combines efficient compression based on standard and proprietary edge compression methods to keep this data small. ObjectBox also has very little overhead. Comparing the transmission of the same data sets, ObjectBox saves 40-60% on transmission data volume through the delta syncing and compression, and thus saves equivalent CO2 emissions for data transmissions. Additional studies support these results, and have shown that moving from a centralized to a distributed data structure, saves between 32 and 93% of transmission data. [5

sync-sustainable-data-save-energy

Calculations: How Does ObjectBox Save CO2?

Physically using a device consumes little energy directly; it is the wireless cloud infrastructure in the backend (data center storage and data transmission) that is responsible for the high carbon footprint of mobile phones [6] and IoT devices. Estimates say that IoT devices will produce around 2,8 ZB of data in 2020 (or 2,823,000,000,000  GB), globally. [7] Only a small portion of that data actually gets stored and used; we chose to use a conservative estimate of 5% [8] (141,150,000,000 GB) and of that portion, 90% is transferred to the cloud [9] (127,035,000,000 GB). Transferring 1 GB of data to the cloud and storing it there costs between 3 and 7 kWh. [10] Assuming an average of 5 kWh this means a 127,035,000,000 GB multiplied by 5kWh, resulting in a total energy expenditure of 635,175,000,000 kWh. Depending on the energy generation used, CO2 emissions vary. We are using a global average of 0,475 kgCO2 / 1 kwH. [11] In total this means that there will be 301,708,125,000 KG of CO2, or roughly 301 million metric tons of CO2 produced to transfer data to the cloud and store it there in 2020. 

Projections for 2025 have data volumes as high as 79.4 ZB. [12] Following the same calculations as above, IoT devices would be responsible for 8 billion metric tons of CO2 in 2025.* We estimate that using ObjectBox can cut CO2 caused by data transmission and data centers by 50-90%, by keeping the majority of data on the device, and transmitting data efficiently. It will take time for ObjectBox to enter the market, so assuming a 10% market saturation by 2025 and an average energy reduction of 70%, using ObjectBox could cut projected CO2 emissions by 594 million metric tons in 2025.

ObjectBox is on a mission to reduce digital waste which unnecessarily burdens bandwidth infrastructure and fills cloud servers, forcing the expansion of cloud farms and in turn, contributing to the pollution of the environment. As our digital world grows, we all need to give some thought to how we should structure our digital environments to optimize and support useful, beneficial solutions, while also keeping them efficient and sustainable. 

*Of course, in that time, the technologies will all be more efficient and thus use less electricity while at the same time CO2 emissions / kWh will have dropped too. Thus, we are aware that this projection is an oversimplification of a highly complex and constantly changing system.

[1] https://www.theclimategroup.org/sites/default/files/archive/files/Smart2020Report.pdf
[2] https://www.iea.org/reports/tracking-buildings/data-centres-and-data-transmission-networks
[3]“Data centres… have eaten into any progress we made to achieving Ireland’s 40% carbon emissions reduction target.” from https://www.climatechangenews.com/2017/12/11/tsunami-data-consume-one-fifth-global-electricity-2025/
[4] https://medium.com/stanford-magazine/carbon-and-the-cloud-d6f481b79dfe
[5] https://www.researchgate.net/publication/323867714_The_carbon_footprint_of_distributed_cloud_storage
[6] https://www.resilience.org/stories/2020-01-07/the-invisible-and-growing-ecological-footprint-of-digital-technology/
[7] https://www.idc.com/getdoc.jsp?containerId=prUS45213219, https://priceonomics.com/the-iot-data-explosion-how-big-is-the-iot-data/, https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends, https://www.iotjournaal.nl/wp-content/uploads/2017/02/white-paper-c11-738085.pdf, ObjectBox research
[8] Forrester (https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Preventing-IoT-data-waste-with-the-intelligent-edge), Harvard BR (https://hbr.org/2017/05/whats-your-data-strategy), IBM (http://www.redbooks.ibm.com/redbooks/pdfs/sg248435.pdf), McKinsey (https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world)
[9] https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders/
[10] According to the American Council for an Energy-Efficient Economy: 5,12 kWh of electricity / GB of transferred data. According to a Carnegie Mellon University study: 7 kWh / GB. The American Council for an Energy-Efficient Economy concluded: 3.1 kWh / GB.
[11] https://www.iea.org/reports/global-energy-co2-status-report-2019/emissions
[12] https://www.idc.com/getdoc.jsp?containerId=prUS45213219

Spread the love