
ObjectBox Swift

ObjectBox Swift Usage Guide

First steps with ObjectBox for Swift:

Installing ObjectBox /install

Getting Started Using ObjectBox in Your Project /getting-started

If you have any questions, don't hesitate to get in touch! contact [at] objectbox.io

ObjectBox Change Log

1.3.0 - 2020-05-11

Built with and for Swift 5.2
Fix sporadic "errno 12" while opening a DB on iOS devices
Lower deployment target to iOS 9.3 (seems to be still used by older iPads)
Fix for PropertyQuery (e.g. single line construction without holding on to Query)
API clean ups

Remove deprecated Query.all(); use find() instead
Box functions like visit(), for() and forEach() are now read-only by default. New
optional writable flags changes this to use a write transaction instead.

1.2.0 - 2019-12-17

Added support for optional unsigned property types
Better type support for queries; e.g. unsigned and optional properties, Bool properties
Property queries compute sums and averages more precisely (improved algorithms and
wider types)

Some Query API clean up, e.g. setting query parameters does not throw anymore,
findUnique() always returns an optional result, etc.

1.1.1 - 2019-11-23

Fix for the 1.1 "realpath" error during build on machines without Homebrew coreutils.

1.1 - 2019-11-18

Experimental Carthage support (in addition to CocoaPods)
If a convert annotation on an enum has no explicit database type given, its

RawType is used.

Various performance optimizations
Usability improvements, e.g. setup.rb now asks which project to use if there is more

than one, and creates a non-empty *.generated.swift file to help with code

completion.
Added put() with variable argument list, put(inout) for mutable structs, and

putAndReturnIDs() . Upgrade note: put() itself no longer returns IDs.

Added variants of Box methods for ContiguousArray class, which are faster than the

methods using standard arrays.
Anonymous build statistics can be turned off using --no-statistics

1.0.1 - 2019-10-01

Fix bug that prevented code generator from working in projects that use SwiftPM

1.0 - 2019-09-24

Relations in queries
Observer callbacks for data changes
Many-to-many relations
Asynchronous put/remove
Edit relations through their backlinks
API clean up; e.g. renames, simple IDs, simplifications, etc.

If you've been using pre-releases, you can find migration instructions in the Readme on
Github.

0.9.1 - 2019-08-13

iOS hotfix

Fixed "Storage error code 78" for iOS

0.9.0 - 2019-07-22

Open Source Release

Source code for the Swift binding is now available
Reduced write/update time by about 25%
Rewrote the remaining Objective-C classes in Swift
Fix an issue reading an old entity written before a new, non-optional property was
added to it
Improvements for people using SwiftLint in their projects
Added findIds() , visit() / forEach() . Added remove() for queries.

Improved support for enum s and other user-defined types

Data and [UInt8] are now supported as property types.

Binaries: Swift 5 ABI only

0.8.0 - 2019-05-14

Struct Support and Performance Improvements

Immutable structs can now be used, you are no longer restricted to classes
We no longer throw NSError -based errors, they're all enum ObjectBoxError cases

now
Strings that were created as NSStrings previously are now created as Swift String

s, which should reduce the number of unnecessary UTF-16/UTF-8 roundtrip
conversions when Swift 5.1 arrives
New projects are now set up with separate generated source files for each target by
setup.rb .

https://github.com/objectbox/objectbox-swift/blob/master/README.md

Binaries: Swift 5 ABI only

0.7.0 - 2019-04-02

Swift 5 and Build Improvements

Binaries: Swift 5 ABI only
ObjectBox setup script can now also be used without CocoaPods
ObjectBox can now be used in frameworks

0.6.0 - 2018-12-19

Model Migration

Your data model is now migrated transparently for you when you make changes
Properties can be indexed
You can require property fields to be unique
You can specify a different name for use in the model than the instance variable's
Use of ObjectBox without CocoaPods has been simplified
You do not need to annotate back-links in relations anymore in clear cases
Binaries: Swift 4 ABI only.
Alpha users:

Use annotations // objectbox: instead of // sourcery:

Delete any database files you created before
(one time only, starting with the beta we have model migrations)

0.5.5 - 2018-11-29

Alpha 6

Remove code-generator limitations regarding order of properties vs. relations
Support sandboxed macOS applications (see macOS Sandbox setup)
Add "transient" annotation for skipping properties
Binaries: Swift 4 ABI only.

0.5.4 - 2018-11-27

https://swift.objectbox.io/install#the-sandbox-on-macos

Alpha 5

Code generation fixes for optionals
Expanded example app to demo optionals
Fixes for Date-decoding into entities
Binaries: Swift 4 ABI only

0.5.3 - 2018-11-26

Cleanup

Just small things. Also an elephant.

0.5.2 - 2018-11-22

iOS Sandboxing.

Fixed issues that could occur when deploying to device.
Added auto-registration of your entities

0.5.1 - 2018-11-19

Alpha 2

Fix an issue related to "duplicate index ID" error message.

0.5.0 - 2018-11-16

Alpha 1

Initial public release for comment.

Installing ObjectBox

CocoaPods

Having problems installing ObjectBox using this guide?
Please, let us know where we lost you. Thanks for your help!

Adding the ObjectBox Framework to Your Project

We recommend to setup ObjectBox using CocoaPods. Other alternatives are Carthage
(experimental) or a manual setup in Xcode. Note that Swift Package Manager does not yet
support binary frameworks and thus is not an option yet.

If you are familiar with CocoaPods or Carthage, here's the quick setup (details below):

1. Add pod 'ObjectBox' to the Podfile in your Xcode project directory.

2. Run these two commands in Terminal:
pod install --repo-update

Pods/ObjectBox/setup.rb

3. Open your .xcworkspace in Xcode.

https://objectbox.io/feedback/
https://cocoapods.org/

Carthage (experimental)

Carthage support is experimental and only recommended for experienced users.
Note: Carthage may falsely report incompatible Swift 5.1.x versions. This Carthage
bug prevents the framework to be installed!

1. Add github "objectbox/objectbox-swift" to your Cartfile

2. Run carthage update to download ObjectBox.

3. Add either Carthage/Build/Mac/ObjectBox.framework or

Carthage/Build/iOS/ObjectBox.framework to the appropriate targets of your

project
4. In the "General" build settings tab, locate the "ObjectBox.framework" and sure

one of "Embed Without Signing" or "Embed & Sign" is selected.
5. Run gem install xcodeproj and then run the ObjectBox setup script from

Carthage/Build/Mac/OBXCodeGen.framework/setup.rb in your project

directory.

Project settings

Because ObjectBox does not include bitcode at this point you need to adjust "Build
Settings" in Xcode accordingly. In that tab, ensure "All" is active and search for "bitcode".
You will find the "Enable Bitcode" setting which you set to "No".

Otherwise, for some build targets, you will get a build error like this:
'.../ObjectBox.framework/ObjectBox' does not contain bitcode. You must rebuild
it with bitcode enabled (Xcode setting ENABLE_BITCODE), obtain an updated
library from the vendor, or disable bitcode for this target.

https://github.com/Carthage/Carthage/issues/2887

Still using Swift 5.0? ObjectBox 1.1 supports Swift 5.1+. If you want to give
ObjectBox a try but are stuck with Swift 5.0, use the ObjectBox501 pod. We
recommend Swift 5.1 though.

Detailed Instructions

CocoaPods

If you don't have CocoaPods already, install it by typing sudo gem install cocoapods in

Terminal. If you don't have a Podfile yet, cd into your Xcode project folder and create

one using pod init as usual. Now find the # Pods for MyTargetName comment for

each target and add the following below it:

pod 'ObjectBox'

 Then run:

pod repo update1
pod install2
Pods/ObjectBox/setup.rb3

The first call will ensure your local copy of the list of available CocoaPods is current, the
second call is your usual procedure when adding a new pod to your Podfile that will

download the newest release of ObjectBox to your Pods directory and install the pod in

your Xcode workspace.

Once you have ObjectBox downloaded, setup.rb will set up the ObjectBox preprocessor

in your project for every target with an executable.

You can now open your project's Xcode workspace as usual and follow the rest of this
tutorial.

Troubleshooting

Something doesn't work yet (e.g. pod install fails)? Try updating CocoaPods related

things using:

gem update xcodeproj && gem update cocoapods && pod repo update

Updating

After a new ObjectBox version is released, you need to get the new pod and run the setup
script again:

pod repo update1
pod update ObjectBox2
Pods/ObjectBox/setup.rb3

Carthage

If you don't have Carthage yet, install it e.g. using Homebrew brew install carthage . If

you do not have a Cartfile yet, create a text file named just Cartfile (no .txt suffix) in

your project's folder and write the following text into it

github "objectbox/objectbox-swift"

Then open Terminal, cd into the folder containing your project and run

carthage update1
gem install xcodeproj2

Carthage/Build/Mac/OBXCodeGen.framework/setup.rb3

The first call is the typical way to make Carthage download a dependency specified in your
Cartfile. Once you have ObjectBox downloaded, setup.rb will set up the ObjectBox

preprocessor in your project for every target with an executable. The
gem install xcodeproj line installs a helper tool needed by the setup script.

Carthage has a bug preventing the Swift pre-built framework from working. It
falsely reports that Swift 5.1.x versions are incompatible. This will cause the
setup to fail!
Track this Carthage issue for updates.

The error looks like this:
Skipped installing objectbox-swift.framework binary due to the error:
 "Incompatible Swift version - framework was built with 5.1.2
(swiftlang-1100.0.278 clang-1100.0.33.9) and the local version is 5.1
(swiftlang-1100.0.270.13 clang-1100.0.33.7)."

Like for all Carthage projects, you now need to open your project in Xcode and add the
framework to your target. You do this by dragging either the
Carthage/Build/iOS/ObjectBox.framework or

Carthage/Build/Mac/ObjectBox.framework (depending on whether your project is for iOS

or macOS) to the "Frameworks, Libraries and Embedded Content" list of the "General" tab of
your target's settings. Make sure you choose "Embed and Sign" to its right.

You can now open your project's Xcode workspace as usual and follow the tutorial.

Ignore the OBXCodeGen.framework that you'll also see in Carthage/Build . It is

not intended to be linked into your application and only exists to hold the code
generator and setup script so you have them while you build.

https://github.com/Carthage/Carthage/issues/2887

Secondary targets, e.g. unit tests

If your unit test target does not find the ObjectBox library, please verify that the "Framework
Search Paths" build settings of that secondary target are set up. Check the screenshot how
to find the setting, and compare the value to the one from your main target. To fix it, press
enter and ensure that the following values are present.

For iOS targets:

$(inherited) $(PROJECT_DIR)/Carthage/Build/iOS

For macOS targets:

$(inherited) $(PROJECT_DIR)/Carthage/Build/macOS

Otherwise, you may get errors like this:
ld: warning: Could not find or use auto-linked framework 'ObjectBox'
Undefined symbols for architecture x86_64: "type metadata accessor for
ObjectBox.ToManyProperty" ...

Updating

After a new ObjectBox version is released, you need to update via Carthage and run the
setup script again:

carthage update1
Carthage/Build/Mac/OBXCodeGen.framework/setup.rb2

Getting Started Using ObjectBox in Your
Project

To see ObjectBox in action, you need to

1. Install ObjectBox if you haven't already.
2. Define your Entities, i.e. the classes you want to persist.
3. import ObjectBox into your source file

Define your Entities

ObjectBox uses code generation to read and write your objects instead of forcing you to
inherit from a base object. To mark an object as an entity, you have two options:

Conform to the Entity protocol

or
add // objectbox:entity before the type as an annotation for the code generator.

Then supply an ID property and parameter-less initializer init() , and you're good to go:

import ObjectBox1
2

class ExampleEntity: Entity {3
 var id: Id = 04
 5
 required init() {6
 // no properties, so nothing to do here, ObjectBox calls this7
 }8
}9

That is all you need to get going. Build your project and ObjectBox's code generator will
generate the boilerplate code to persist and read objects of this type.

https://objectbox.io/docfiles/swift/current/Core.html#/s:9ObjectBox6EntityP

You initialize an Id with 0 for all entities. This tells ObjectBox your object isn't

persisted, yet. When you persist objects, the ID will be changed to the actual
value. And once an entity has a non-zero ID, persisting changes will update the
existing record instead of creating a new one.

So the ID is managed by ObjectBox. Conversely, you do not want to modify it
yourself.

Initialize a Store

To create or access a database on disk, use the ObjectBox.Store class. The Store

behaves much like a database connection: you keep the instance around to maintain an
open connection to the data in a folder on disk. Usually for the lifetime of your app.

let store = try Store(directoryPath: "/Users/jenna/Documents/mydatabase/")

Getting "Missing argument for parameter 'model'..." here?
Build the project first.

Background: The ObjectBox code generator creates a second Store() initializer
without the model parameter. It does this after parsing all your entities, which
happens at build time. Thus, make sure to build your project at least once after
declaring your entities. Otherwise Xcode's CodeSense auto-completion will not
propose the right initializer in its list.

Of course, you would usually save your database in one of the standard system directories,
like .applicationSupportDirectory , .documentsDirectory or .cachesDirectory :

let databaseName = "notes"1
let appSupport = try FileManager.default.url(for: .applicationSupportDirec2
 in: .userDomainMask,3
 appropriateFor: nil,4
 create: true)5
 .appendingPathComponent(Bundl6
let directory = appSupport.appendingPathComponent(databaseName)7
try? FileManager.default.createDirectory(at: directory,8
 withIntermediateDirectories: true9
 attributes: nil)10

11
let store = try Store(directoryPath: directory.path)12

Working with Object Boxes

Since ObjectBox is all about sticking objects in boxes, you interact with objects using a
Box interface. For each object class, there is a matching Box instance.

To manage your entities, you retrieve the ObjectBox.Box<T> instance for its class from

your Store . Boxes are lightweight and can be discarded, but then you have to pass the

Store around. You will almost always prefer to pass long-lived Box instances around

instead, for example in segues between UIViewControllers .

let exampleEntityBox = store.box(for: ExampleEntity.self)1
// Similarly:2
let personBox = store.box(for: Person.self)3
let noteBox: Box<Note> = store.box()4

Wherever you have access to a Box, you can use it to persist objects and fetch objects from
disk. Boxes are thread safe. Here are some of the basic operations:

put: Persist an object, which may overwrite an existing object with the same ID. In other
words, use put to insert or update objects. When put succeeds, an ID will be assigned

to the entity. There are put variants that support writing multiple objects at once,

which is more efficient than writing each with its own call to put .

get: When you have an object's ID, you can get to the object very efficiently using get .

To get all objects of a type, use all .

remove: Deletes a previously persisted object from its box. There are method overloads
to remove multiple entities, and removeAll to delete all objects and empty the box.

count: The number of objects stored in this box.
query: Lets you provide a query expression to retrieve objects by certain criteria. See
the page on queries for details.

Check the API docs for Box for a list of operations.

Put and Get Example

Once you have a box, it is simple to persist an entity. To illustrate the change of IDs, we
added assertions to the code; you don't need these, of course.

// let's start with an empty box1
assert(try exampleEntityBox.isEmpty())2

3
let exampleEntity = ExampleEntity()4
assert(exampleEntity.id.value == 0)5

6
let newID = try exampleEntityBox.put(exampleEntity)7
// Change of ID with the `put`:8
assert(exampleEntity.id.value != 0)9
assert(exampleEntity.id == newID)10

11
// Check the Box contents did indeed change:12
assert(try exampleEntityBox.count() == 1)13
assert(try exampleEntityBox.all().first?.id == newID)14

15
// Getting to a specific object16
guard let foundEntity = try exampleEntityBox.get(newID) 17
 else { fatalError("Object should be in the box") }18
assert(exampleEntity.id == foundEntity.id)19

20
// Cleaning up21
try exampleEntityBox.removeAll()22
assert(try exampleEntityBox.count() == 0)23

Put with structs

https://objectbox.io/docfiles/swift/current/Classes/Box.html

Structs basically work the same way as classes. However, since structs are value types,
ObjectBox can only adjust their ID if you pass them by reference. So if you have a mutable
struct, remember to pass it by reference:

// objectbox: entity1
struct Author {2
 var id: Id // Do not initialize the ID to 0 for structs.3
 var name: String4
 var age: Int5
}6

7
let exampleEntityBox = store.box(for: Author.self)8
var exampleEntity = Author(id: 0, name: "Nnedi Okorafor", age: 45)9

10
// Put the struct and update the ID:11
try exampleEntityBox.put(&exampleEntity)12
assert(exampleEntity.id != 0)13

Alternately, you can manually update the struct's ID field by using putAndReturnID() or

putAndReturnIDs() to get the ID a struct was written as:

exampleEntity.id = exampleEntityBox.putAndReturnID(exampleEntity)

Given immutable structs are such a common occurrence, ObjectBox generates a
convenience method for you to help with updating the ID on an immutable struct,
put(struct:) , which will automatically create a new copy of your struct with the ID filled

out:

// objectbox: entity1
struct Author {2
 let id: Id // Do not initialize the ID to 0 for structs.3
 let name: String4
 let age: Int5
}6

7
// Let's start with an empty box:8
let exampleEntityBox = store.box(for: Author.self)9

let exampleEntity = Author(id: 0, name: "Nnedi Okorafor", age: 45)10
11

// Put the immutable struct:12
let newEntity = try exampleEntityBox.put(struct: exampleEntity)13
assert(newEntity.id != 0)14

Note that, after writing exampleEntity , you must use newEntity from then on. If you

called put(struct:) or put() on exampleEntity again, ObjectBox would not know that

this object has already been saved, and would write a second copy of it to the database.

But what if you know you already saved an immutable entity, and you already made a copy
because you changed one of its fields, and don't need another copy? Then you can call
put() , just like above:

// Modify object:1
let futureExampleEntity = Author(id: newEntity.id, name: newEntity:name,2
 age: newEntity.age + 1)3

4
// Write out changes:5
try exampleEntityBox.put(futureExampleEntity)6

So beyond having to use a special call the first time you write out an entity, everything is the
same as with classes.

For ObjectBox to work with structs, there needs to be an init() method on

your struct that accepts all its persisted properties. In the above example, the
default initializer provided for the struct by Swift does just fine, but if you have
properties that are not persisted, or you are defining your own initializer, you may
also have to provide that initializer.

Note that for structs you will usually not want to specify a default value of 0 for
the ID like you do for classes. If you do, the default initializer will omit the "id:"
parameter and there would be no way to initialize the ID without writing your
own initializer.

Transactions

Transactions in ObjectBox let you group together several operations and ensure that either
all of them complete, or none does, always leaving your data relations in a consistent state.
If you do not run your own transaction, ObjectBox will implicitly create one for every call:

A put runs an implicit transaction.

Prefer the put variant that takes an array of entities (like put([person1, person2])

) whenever possible to increase performance.

For a high number of interactions inside loops, consider wrapping the loop in explicit
transactions. Store exposes methods like runInTransaction for this purpose.

// Bad/slow, each Put runs inside a new transaction1
for i in (1...1000) {2
 try box.put(AnEntity(number: i))3
}4

5
// Possible, but still inefficient6
try store.runInTransaction {7
 for i in (1...1000) {8
 try box.put(AnEntity(number: i))9
 }10
}11

12
// Much better13
let allEntities: [AnEntity] = (1...1000).map(AnEntity.init(number:))14
try box.put(allEntities)15

For details, check the Transaction guide and the API docs for Store for details.

https://objectbox.io/docfiles/swift/current/Extensions/Store.html

Entity Annotations

ObjectBox - Database Persistence with Entity Annotations

ObjectBox is a database that persists objects. For a clear distinction, we sometimes call
those persistable objects entities. To let ObjectBox know which classes are entities you can
either make them implement the ObjectBox.Entity protocol, or add annotations to them.

Then ObjectBox can do its magic with your entities.

Here is an example:

// objectbox: entity1
class User {2
 var id: Id = 03

4
 var name: String5

6
 // objectbox: transient7
 private var tempUsageCount: Int // not persisted8

9
 // ...10
}11

 The Entity annotation identifies the Swift class User as a persistable entity. This will

trigger ObjectBox to generate persistence code tailored for this class, even if it does not
conform to the Entity protocol..

Note: It’s often good practice to model entities as “dumb” data classes with just
properties.

Object IDs: id

In ObjectBox, every object has an ID of type Id to efficiently get or reference objects. Usually
ObjectBox will just find that property in your entity based on its type and "do the right thing",
but if you have several properties of the same Id type, or your ID uses the types UInt64

or Int64 , you can use an annotation to mark a particular property as the ID of your entity:

class User: Entity {1
2

 // objectbox: id3
 var thisIsMyId: UInt64 = 04

5
 // ...6
}7

While we recommend to define your ID as type Id or EntityId<MyEntity> (where

MyEntity would be replaced with the name of your class), you can also annotate a

property of type UInt64 or Int64 as an ID.

ObjectBox will usually manage ID values for you, but should you absolutely need to, you
can tell ObjectBox that you want to assign IDs manually by yourself by adding an
"assignable" parameter to the id annotation:

// objectbox: id = { "assignable": true }

If you do that, make sure that you assign a unique ID to each new object. If you assign the
same ID to two objects of the same class, writing one to the database will overwrite the
other. In general, it is best to let ObjectBox assign IDs. You are free to provide an additional
indexed property to e.g. store a GUID for an object in addition to the ID used by ObjectBox,
and to use queries to retrieve objects based on that GUID.

Ways to Define IDs

To specify Entity IDs, you need to have a property of type Id . The code generator will look

for one of these configurations, in the following order

1. A property that has a // objectbox: id comment annotation on the line above the

property definition.
2. A property named var id: Id .

3. Any other property of the Id type, if there is only one.

You usually don't need more than one property of the Id type. Use ObjectBox's support for

object relations if you need to connect entities with each other. In any case, should you
need to store a reference to another object for an unusual purpose, simply use annotations
to ensure ObjectBox uses the right property as the entity's ID.

Here's an example of using annotations in action:

// objectbox: entity1
class ExampleEntity {2
 var anotherID: Id = 03

4
 // objectbox: id5
 var theEntityIdentifier: Id = 0 // <- this will be used6
 7
 required init() {8
 // nothing to do here9
 }10
}11

ObjectBox supports several types for IDs. Apart from Id , you can also use the

more type-safe EntityId<ExampleEntity> struct (where ExampleEntity is the

class of your entity), which will let you ensure that you don't accidentally pass
an ID of the wrong type into Box API.

In addition, you can also use UInt64 or Int64 for your IDs, but for ObjectBox

to know to use those, you must annotate them.

Using Different Names in the Database than in Swift

class User: Entity {1
 // objectbox: name = "USERNAME"2
 var name: String3
 ...4
}5

The name annotation lets you define a name on the database level for a property. This

allows you to rename the Swift field without affecting the property name on the database
level. This is mostly useful in cross-platform code, where different platforms may have
different conventions for property names and you need to exchange database files between
them.

Note: To rename properties and even entities you should use Uid annotations
instead.

Transient Properties

class User: Entity {1
 // objectbox: transient2
 var tempUsageCount: Int3
 ...4
}5

The // objectbox: transient annotation can be used to mark properties that should not

be persisted, like the temporary counter above. As far as ObjectBox is concerned, transient
properties simply do not exist. static properties are always ignored by ObjectBox and do

not need to be marked as transient.

Property Indexes with Index

https://swift.objectbox.io/advanced/meta-model-ids-and-uids

Annotate a property with // objectbox: index to create a database index for the

corresponding database column. This can greatly improve performance when querying for
that property.

// objectbox: index1
var name: String2

Index is currently not supported for Data , Float and Double

An index stores additional information in the database to make lookups "faster", or more
correctly, "more scalable". With an index, you will get results fast no matter if you store ten,
one thousand, or one million objects in the database. Index based database lookups
perform in O(log n).

As an analogy we could look at how you store objects in an Array<> . For example you

could store persons using an Array<Person> . Now, you want to search for all persons

with a specific name so you would iterate through the list and check for the name property
of each object. This is an O(N) operation and thus does not scale well with an increasing
number of objects.

To make this more scalable you can introduce a second data structure
Dictionary<String, Person> with the name as a key. This will give you a superfast

lookup time (typically O(1)). The downside of this is that it needs more resources (here:
RAM) and slows down add/remove operations on the list a bit. These principles can be
transferred to database indexes, just that the primary resource consumed is disk space.

Index types (String)

Because String properties typically take more space than scalar values, ObjectBox uses

a hash for indexing strings by default. For any other type, the property value is used for all
index look-ups.

You can instruct ObjectBox to use a value-based index for a String property by specifying

an index type:

// objectbox: index = value 1
var name: String2

Keep in mind that for String , depending on the length of your values, a value-based index

may require more storage space than the default hash-based index.

ObjectBox supports these index types:

Not specified Uses best index based on property type (hash for String , value for

others).
value Uses property values to build index. For String, this may require more storage

than a hash-based index.
hash Uses 32-bit hashes of property values to build the index. Occasional collisions
may occur which should not have any performance impact in practice. Usually a better
choice than hash64, as it requires less storage.
hash64 Uses 64-bit hashes of property values to build the index. Requires more storage
than hash and thus should not be the first choice in most cases.

Limits of hash-based indexes: Hashes work great for equality checks, but not
for "starts with" type conditions. If you frequently use those, you should use
value-based indexes instead.

Unique constraints

Annotate a property with unique to enforce that values are unique before an entity is put:

// objectbox: unique1

var name: String2

A put() operation will abort and throw an ObjectBoxError.uniqueViolation error:

do {1
 try box.put(User("Sam Flynn"))2
} catch ObjectBoxError.uniqueViolation(let message) {3
 // A user with that name already exists.4
}5

Unique constraints are based on an index. You can further configure the index by
adding an index annotation.

Converting Enums and Custom Types

You can add an // objectbox: convert annotation to properties with types that

ObjectBox does not know to allow converting it into a recognized type. See Enums and
Custom Types for more.

Relations

Creating to-one and to-many relations between objects is possible as well, and may require
use of the // objectbox: backlink annotation, see the Relations documentation for

details.

Triggering generation

You usually should not need to do anything special to trigger code generation once your
entity classes are properly annotated. The setup.rb script should have automatically

configured your project to run the code generator when you compile your project, for
example using Product > Build in Xcode.

Should you have unusual needs or encountering issues, see Customizing Code Generation
for a description of how things usually work.

Queries

Building Queries that Return Entities

Beyond simple "fetch all" commands, like personBox.all() , you may want to filter entities

by their properties. ObjectBox's query syntax should be familiar to every Swift developer,
because queries are written in Swift:

let query: Query<Person> = try personBox.query {1
 Person.name.startsWith("Andrea")2
}.build()3
let allAndreas: [Person] = try query.find()4

You simply write your class name, the property name, and then an operator, or a method
name (like startsWith() here). While most of these calls look like the regular Swift calls

you're used to, they are actually provided by ObjectBox's code generator, so not all methods
you would e.g. find on a String are available for queries. See below for available

operations.

Store query objects for re-use to increase performance.

You can call Query.find() , Query.count() , and all the other operations that

execute a query multiple times. In performance-critical situations, building a new
query object thousands of times can easily become costly.

Query Syntax

Combine Conditions with logical Operators and Parentheses

Query conditions can be combined by the use of the logical operators && and || .

let query: Query<Person> = try personBox.query {1
 Person.firstName.startsWith("Ste") 2
 && Person.lastName.startsWith("Jo")3
}.build()4
let maybeSteveJobs = try query.find()5

Since these are overloads of native Swift operators, their standard operator precedence
rules apply (&& > ||). You can use parentheses to group conditions and affect the truth

condition of the whole expression.

That's fancy talk for: group condition parts by wrapping them in parens.

let query: Query<Person> = try personBox.query {1
 (Person.firstName.contains("Santa") || Person.age > 100)2
 && Person.lastName.isEqual(to: "Claus", caseSensitive: true) 3
}.build()4
let oldClauses = try query.find()5

QueryCondition Operators

ObjectBox also provides operators for the most common operations. Please note that the
property comes first:

Collection containment: ∈ and ∉ ; for example, disallowing teens entry to your disco:

Person.age ∉ (10..<18)

Equality: == and != , as in Person.firstName == "Steve"

Comparison: < and > , as in CocoaPod.rating > 4.5

Those operators are available for optional types, which currently lack the long
form.

There are no custom operators for conditions like Property<T, String>.startsWith() , as

their names are already much more familiar to Swift developers.

Query Operations

Once you have a query set up properly, you can execute it as often as you want to get the
latest results of its evaluation. These are the most common operations:

Query.find() will return all results that match

Query.count() will return the count of all results that match

Query.findUnique() will return an unique match from the result set; returns nil if no

result was found and throws if the result is not unique

Please refer to the Query API docs for a comprehensive list of permitted operations.

Sorting

In addition to specifying conditions you can order the returned results using the
ordered() method:

let query = try userBox.query { User.firstName == "Joe" }1
 .ordered(by: User.lastName) // in ascending order, ignorin2
 .build()3

You can also pass flags to ordered(by:,flags:) to sort in descending order, to sort case

sensitively or to treat null values specially . For example, to sort the above results in
descending order and case sensitively instead:

let query = try userBox.query { User.firstName == "Joe" }1
 .ordered(by: User.lastName, flags: [.descending, .caseSens2
 .build()3

Order conditions can also be chained. Check the method documentation for details.

https://objectbox.io/docfiles/swift/current/Structs/Query.html
https://objectbox.io/docfiles/swift/current/Structs/QueryBuilder.html

Modifying Conditions Later

You can modify conditions after creation of the query. That can be useful if your base query
stays the same but one small part changes between find() executions and you don't

want to create a new Query object every time.

To do that, you use the query's setParameter() methods. Refer to the Query API docs for

a comprenhesive list of permitted setParameter() variants.

setParameter Changes the Condition Value

There are many useful variants of the Query.setParameter() and

Query.setParameters() method. (Note the plural s.) The first version will set the

comparison value of a condition that matches to a new value. The second version does the
same for comparisons with two values, hence the plural s.

For example:

query.setParameter(Person.age, to: 18) for a query you built using

personBox.query { Person.age == 21 }.build() will effectively change the

condition to Person.age == 18

query.setParameters(Person.age, to: 10, and: 18) for a query you built using

personBox.query { Person.age.isBetween(0, and: 99) }.build() will effectively

change the condition to Person.age.isBetween(10, and: 18)

You will get fatal errors if you try to call the plural-s-Version when the original
condition only has one comparison value, and vice versa. Also note that this is
an usage error and thus does not throw.

Use PropertyAlias to Disambiguate Conditions

One problem of the property-based approach above is that you have no control what
happens when there are two or more conditions on the same property:

https://objectbox.io/docfiles/swift/current/Structs/Query.html

let query = try personBox.query {1
 Person.age > 10 2
 && Person.age < 503
}.build()4
query.setParameter(Person.age, to: 25) // did this affect "<" or ">" ?5

To resolve this ambiguity, you can register a short name (called an alias) for a query
condition. That's a simple string to give the condition a name.

We use a variant of the definition operator (.=) for this:

let query = try personBox.query {1
 "MinAge" .= Person.age > 10 2
 && "MaxAge" .= Person.age < 503
}.build()4
query.setParameter("MinAge", to: 25)5

There is, of course, also a plural s-variant for conditions with two values. The same warning
as above applies: make sure not to mix up the plural and singular versions.

A downside of the string-based alias approach is that you lose type information: you have
to make sure not to pass a Double to a setter for a condition that operates on String ,

for example.

Building Queries that Operate on Properties

In addition to filtering entities, you can also build queries for their properties. These are
aggregate functions like max , min , average , count , but also various find methods.

These are available on the PropertyQuery type, that you can get from a regular query like

this:

let query: Query<Person> = try personBox.query { Person.firstName.startsWi1

let agePropertyQuery: PropertyQuery<Person, Int> = query.property(Person.a2

The PropertyQuery will respect all conditions of its original Query . So in the example

above, only entities with a firstName that starts with "S" will be regarded. Use the empty

block variant personBox.query() if you want to operate on all entities.

Please refer to the PropertyQuery API docs for an exhaustive list of operations.

Currently, property queries do not honor the ordered(by:,flags:) setting. If

you need a fixed order for your proerty query results, you must sort them
manually after retrieving them.

Aggregate Functions

A simple aggregate function is to request the maximum, minimum, or average value of a
given property.

let query: Query<Person> = try personBox.query().build()1
let agePropertyQuery: PropertyQuery<Person, Int> = query.property(Person.a2
let maxAge: Int = try agePropertyQuery.max()3
let minAge: Int = try agePropertyQuery.min()4
let averageAge: Double = try agePropertyQuery.average()5

Number-based operations are only available for number-based properties and not for
strings, for example. Also note that the average of a property is always a floating point
number, even if the property is an Int (what would you do with a non-fractional average

anyway?).

Fetching all Property Values

In addition to aggregate functions, you can also use "find" methods. These will return any or
all of the values of entities matching the query:

https://objectbox.io/docfiles/swift/current/Classes/PropertyQuery.html

let query: Query<Person> = try personBox.query { Person.firstName == "Stev1
let steveLastNamePQ: PropertyQuery<Person, String> = query.property(Person2
let allOfStevesLastNames: [String] = try steveLastNamePQ.findStrings()3
// if allOfStevesLastNames.contains("Jobs") { ... }4

While the possibilities are not literally endless, they are plentiful if you combine query
conditions with property-based requests.

Distinct and Unique Results

The property query can also only return distinct values, not producing duplicates. That
means if you have 5 people in your database with ages [25, 30, 30, 40, 40] , you will

get [25, 30, 40] as a distinct result set.

For example:

let names: [String] = try personBox.query().build()1
 .property(Person.firstName)2
 .distinct(caseSensitiveCompare: false)3
 .findStrings()4

If only a single value is expected to be returned the query can be configured to throw if that
is not the case:

do {1
 let singleNameResult: String = try personBox.query { Person.age > 999 2
 .property(Person.firstName)3
 .findUniqueString()4
} catch ObjectBoxError.uniqueViolation(let message) {5
 print("Found more than one item! \(message)")6
}7
guard let singleNameResult = singleNameResult else {8
 fatalError("No result found at all.")9
}10

You can combine distinct() with findUnique() .

Building Queries Traversing Relations

If your entity contains a relation to other entities, you can apply additional criteria to the
related entities by using the link(_ property:, conditions:) method on your query.

E.g. if you had an entity Order that has a property ToOne<Order, Customer> pointing to

the customer that placed the order, you could select all orders belonging to a particular
customer from today's orders using

let sallysOrders = try orderBox.query{1
 Order.date.isAfter(thisMorning)2
 }.link(Order.customer) {3
 Customer.name == "Sally Sparrow"4
 }.build().find()5

This is equivalent to what other databases call a join .

How do queries work?

Let's assume we have this interesting Entity:

class Person: Entity {1
 var id: Id = 02
 var firstName: String3
 var lastName: String4
 var age: Int5

6
 init(firstName: String, lastName: String, age: Int) {7
 self.firstName = firstName8
 self.lastName = lastName9
 self.age = age10

 }11
12

 // ... 13
}14

For this entity, the code generator will create something like this:

extension Person {1
 static var id: Property<Person, Id, Void> { /* ... */ }2
 static var firstName: Property<Person, String, Void> { /* ... */ }3
 static var lastName: Property<Person, String, Void> { /* ... */ }4
 static var age: Property<Person, Int, Void> { /* ... */ }5
}6

That's your entity property metadata. The code generator will create these static properties
for you with the same name as a stored object's properties. This is what you use for
queries.

The associated types of the generic Property<Entity, Value, ReferencedType> itself

encode so much interesting information already to make the query interface very intuitive,
for example:

Property<E, String, R> exposes methods that make sense for strings, like

contains

Property<E, Int, R> exposes methods that make sense for numbers, including

comparisons
Property<E, Date, R> exposes methods for dates, like isBetween(_:and:)

All of these factory methods create a QueryCondition , the type used for queries, and a lot

of them have intuitive operator variants. Please refer to the API docs for a full list of
operators and methods.

https://objectbox.io/docfiles/swift/current/Structs/Property.html

Relations

To-One Relation

Objects may reference other objects, for example using a simple reference or a list of
objects. In database terms, we call those references relations. The object defining the
relation we call the source object, the referenced object we call target object. So the relation
has a direction.

If there is one target object, we call the relation to-one. And if there can be multiple target
objects, we call it to-many. Relations are lazily initialized: the actual target objects are
fetched from the database when they are first accessed. Once the target objects are
fetched, they are cached for further accesses.

To-One Relations

You define a to-one relation using the ToOne class, a smart proxy to the target object. It

gets and caches the target object transparently.

For example, an order is typically made by one customer. Thus, we could model the
Order class to have a to-one relation to the Customer like this:

class Customer: Entity {1
 var id: Id = 02
 // ...3
}4

5
class Order: Entity {6
 var id: Id = 07
 var customer: ToOne<Customer> = nil8
 // ...9
}10

Given these entities and their to-one relation, you can create a relation and persist it:

let store = ...1
// Illustrate that initially, nothing did exist2
assert(try store.box(for: Customer.self).isEmpty())3
assert(try store.box(for: Order.self).isEmpty())4

5
let customer = Customer()6
let order = Order()7
order.customer.target = customer8
let orderId = try store.box(for: Order.self).put(order) // puts order and 9

10
// Verify the `put` was called for the relation target as well11
assert(try store.box(for: Customer.self).count() == 1)12
assert(try store.box(for: Order.self).count() == 1)13

You can persist whole trees of object relations at once: If the customer object
does not yet exist in the database, the ToOne will put() it. If it already exists,

the ToOne will only create the relation (but not put() it).

For a comprehensive documentation of its features, visit the ToOne API docs.

Removing Relations

https://objectbox.io/docfiles/swift/current/Classes/ToOne.html

You have to set the target of a relation to nil and persist the changed object(s) via

Box.put() to remove a relation permanently. Which one you reset doesn't matter, though.

You have these options:

anOrder.customer.target = nil1
// ... or ...2
anOrder.customer.targetId = nil3
// ... are both equivalent to:4
anOrder.customer = nil5
// ... whis is a short version of:6
anOrder.customer = ToOne<Customer>(target: nil)7

Removing a relation never removes participating objects.

ToOne is a Lazy Relation Proxy

The target object of a relation is not eagerly loaded from the store; it is loaded lazily. Until
you request the ToOne.target , it will not be read into main memory.

To-Many Relations

To define a to-many relation, you can use a property of type ToMany . Like the ToOne class,

the ToMany class helps you to keep track of changes and to apply them to the database.

Note that to-many relations are resolved lazily on first access, and then cached in the
source entity inside the ToMany object. So subsequent calls to any method, like the

count of the ToMany , do not query the database, even if the relation was changed

elsewhere. To avoid the cache and trigger a fresh reload from the database, call reset()

on the ToMany .

One-To-Many Relation

There is a slight difference if you require a one-to-many (1:N) or many-to-many (N:M)
relation. A 1:N relation is like the example above where a customer can have multiple
orders, but an order is only associated with a single customer. An example for an N:M
relation are students and teachers: students can have classes by several teachers but a
teacher can also instruct several students.

One-to-Many Relations (1:N)

For every ToOne relation that you have, you can define a backlink. Backlinks are using the

same relation information, but in the reverse direction. Thus, a backlink of a ToOne will

result in a list of potentially multiple objects: all entities pointing to the same entity.
Example: Two Order objects point to the same Customer using a ToOne . The backlink is a

ToMany from the Customer referencing its two Order objects.

Let's extend the example from above to get the backlinks from Customer to Order :

class Customer: Entity {1
 var id: Id = 02
 // objectbox: backlink = "customer"3
 var orders: ToMany<Order> = nil4
 // ...5
}6

7
class Order: Entity {8

 var id: Id = 09
 var customer: ToOne<Customer> = nil10
 // ...11
}12

Note you tell ObjectBox about your backlink using an // objectbox: backlink = "name"

annotation (where name is the name of the ToOne property that makes up the other end of
the relation).

Once the backlink is set up, you can traverse the relation in both directions:

// Store two new orders for a new customer1
let customer = Customer()2
let order1 = Order(customer: customer)3
let order2 = Order(customer: customer)4
try store.box(for: Order.self).put([order1, order2])5

6
// ID of customer was also set by put()7
assert(customer.id != 0)8

9
// Backlink: customer has two orders10
assert(try store.box(for: Customer.self).get(customer.id).orders.count() =11

In database terminology, you create a (bi-directional) one-to-many (1:N)
relationship by defining a ToOne with a backlink ToMany.

Collection Nature of ToMany

ToMany conforms to Swift's RandomAccessCollection protocol. Thus, you can use it just

like an array or similar collections and pass it around. And of course, you can create an
Array if need be:

let orders = Array(customer.orders)

See also: ToMany API docs

Modifying One-to-Many Relations

Apart from being a RandomAccessCollection, a ToMany relation is also a

RangeReplaceableCollection . That means you can use append(_:) etc. on it just like

on an Array to modify it. We've also added a replace(_:) method as a convenience to

replace all entities referenced by the relation.

Once you've performed all the modifications you want, call applyToDb() on the ToMany

to actually cause them to be written to the database. This separation into two steps
prevents e.g. a filtering algorithm being called on the ToMany from triggering an

unnecessailry huge number of database writes.

When you change its contents, ToMany will simply set the ToOne relation in the removed

entities to nil , and will make added entities' ToOne point at the object containing the

ToMany backlink. Note that you can only assign an entity to a relation that has already

been assigned an ID (by putting it or loading an existing entity from the database):

let newOrder = Order(summary: "Shoes")1
try orderBox.put(newOrder) // Must put or the replace() below will fail!2
aCustomer.orders.replace([newOrder, oldOrder])3
try aCustomer.orders.applyToDb()4

Also, modifying a ToMany backlink modifies the ToOne of the referenced entities (in this

example, newOrder and oldOrder) and will put() those objects to actually write out

the changed relation. To remove all references to an entity, you may pass an empty array to
replace() :

// You cannot set `aCustomer.orders = nil`, so:1
aCustomer.orders.replace([])2
try aCustomer.orders.applyToDb()3

https://objectbox.io/docfiles/swift/current/Classes/ToMany.html

Many-to-Many (N:M)

Removing a relation never removes the referenced objects from the database.

Many-to-Many (N:M)

To define a many-to-many relation you simply add a property using the ToMany class.

Assuming a students and teachers example, this is how a simple Student class that has

a to-many relation to Teacher entities can look like:

class Teacher: Entity {1
 var id: Id = 02
 3
 ...4
}5

6
class Student: Entity {7
 var id: Id = 08
 var ToMany<Teacher> teachers = nil9
 10
 ...11
}12

Adding the teachers of a student works exactly like with an array, or a one-to-many relation:

let teacher1 = Teacher()1
let teacher2 = Teacher()2

3
let student1 = Student()4
let student2 = Student()5

6

try store.box(for: Teacher.self).put([teacher1, teacher2])7
try store.box(for: Student.self).put([student1, student2])8

9
student1.teachers.append(teacher1)10
student1.teachers.append(teacher2)11

12
student2.teachers.append(teacher2)13

14
try student1.teachers.applyToDb()15
try student2.teachers.applyToDb()16

To get the teachers of a student we just access the list:

var student1 = try boxStore.box(for: Student.self).get(student1.id)1
for (let teacher in student1.teachers) {2
 ...3
}4

And if a student drops out of a class, we can remove a teacher:

student1.teachers.remove(at: 0)1
try student1.teachers.applyToDb()2

Removing a relation never removes the referenced objects from the database.

Access Many-To-Many in the reverse direction

Following the above example, you might want an easy way to find out what students a
teacher has. Instead of having to perform a query, you can just add a to-many relation to
the teacher and annotate it with the // objectbox: backlink annotation:

class Teacher: Entity {1
 var id: Id = 02

 // objectbox: backlink = "teachers"3
 var students: ToMany<Student> = nil4
 ...5
}6

7
class Student: Entity {8
 var id: Id = 09
 var teachers: ToMany<Teacher> = nil10
 11
 ...12
}13

This will tell ObjectBox that there is only one relation, teachers , and that students is

just a reverse-lookup of this relation. In any other respect, a many-to-many backlink can be
used just like its forward counterpart.

Relations in Queries

You can traverse relations in queries.

Example: Modelling Tree Relations

You can model a tree relation with a to-one and a to-many relation pointing to itself:

class TreeNode: Entity {1
 var id: Id = 02
 3
 var parent: ToOne<TreeNode> = nil4
 5
 // objectbox: backlink = "parent"6
 var children: ToMany<TreeNode> = nil7
}8

The generated entity lets you navigate its parent and children:

let parent = entity.parent.target1
let children = Array(entity.children)2

Transactions

ObjectBox - Transactions

ObjectBox is a fully transactional database satisfying ACID properties. A transaction can
group several operations into a single unit of work that either executes completely or not at
all. If you are looking for a more detailed introduction to transactions in general, please
consult other resources like Wikipedia on database transactions. For ObjectBox
transactions continue reading:

You may not notice it, but almost all interactions with ObjectBox involve transactions. For
example, if you call put a write transaction is used. Also if you get an object or query

for objects, a read transaction is used. All of this is done under the hood and transparent to
you. It may be fine to completely ignore transactions in your app without running into any
problems. With more complex apps however, it’s usually worth learning transaction basics
to make your app more consistent and efficient.

Explicit transactions

We learned that all ObjectBox operations run in implicit transactions – unless an explicit
transaction is in progress. In the latter case, multiple operations share the (explicit)
transaction. In other words, with explicit transactions you control the transaction boundary.
Doing so can greatly improve efficiency and consistency in your app.

The class Store offers the following methods to perform explicit transactions:

runInTransaction : Runs the given closure inside a transaction (comes in result-

forwarding and/or throwing variants).
runInReadOnlyTransaction : Runs the given closure inside a read(-only) transaction.

Unlike write transactions, multiple read transactions can run at the same time.

The advantage of explicit transactions over the bulk put operations is that you can perform
any number of operations and use objects of multiple boxes. In addition, you get a
consistent (transactional) view on your data while the transaction is in progress.

https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Database_transaction
https://objectbox.io/docfiles/swift/current/Extensions/Store.html

Example for a write transaction:

try store.runInTransaction {1
 try allUsers.forEach { user in2
 if (modify(user)) {3
 try box.put(user)4
 } else {5
 try box.remove(user)6
 }7
 }8
}9

Transaction Costs

Understanding transactions is essential to master database performance. If you just
remember one sentence on this topic, it should be this one: a write transaction has its price.

Committing a transaction involves syncing data to the physical storage, which is a
relatively expensive operation for databases. Only when the file system confirms that all
data has been stored in a durable manner (not just memory cached), the transaction can be
considered successful. This file sync required by a transaction may take a couple of
milliseconds. Keep this in mind and try to group several operations (e.g. put calls) in one

transaction.

Consider this example:

try allUsers.forEach { user in1
 modify(user) // modifies properties of given user2
 try box.put(user)3
}4

Do you see what’s wrong with that code? There is an implicit transaction for each user
which is very inefficient especially for a high number of objects. It is much more efficient to
use of of the put overloads to store all users at once:

try allUsers.forEach { user in1
 modify(user) // modifies properties of given user2
}3
try box.put(allUsers)4

Much better! If you have 1,000 users, the latter example uses a single transaction to store
all users. The first code example uses 1,000 (!) implicit transactions causing a massive
slow down.

Read Transactions

In ObjectBox, read transactions are cheap. In contrast to write transactions, there is no
commit and thus no expensive sync to the file system. Operations like get , count , and

queries run inside an implicit read transaction if they are not called when already inside an
explicit transaction (read or write). Note that it is illegal to put when inside a read

transaction: an exception will be thrown.

While read transactions are much cheaper than write transactions, there is still some
overhead to starting a read transaction. Thus, for a high number of reads (e.g. hundreds, in
a loop), you can improve performance by grouping those reads in a single read transaction
(see explicit transactions below).

Multiversion concurrency

ObjectBox gives developers Multiversion concurrency control (MVCC) semantics. This
allows multiple concurrent readers (read transactions) which can execute immediately
without blocking or waiting. This is guaranteed by storing multiple versions of (committed)
data. Even if a write transaction is in progress, a read transaction can read the last
consistent state immediately. Write transactions are executed sequentially to ensure a
consistent state. Thus, it is advised to keep write transactions short to avoid blocking other
pending write transactions. For example, it is usually a bad idea to do networking or

https://en.wikipedia.org/wiki/Multiversion_concurrency_control

complex calculations while inside a write transaction. Instead, do any expensive operation
and prepare objects before entering a write transaction.

Note that you do not have to worry about making write transactions sequential yourself. If
multiple threads want to write at the same time (e.g. via put or runInTransaction), one

of the threads will be selected to go first, while the other threads have to wait. It works just
like a lock.

Locking inside a Write Transaction

Avoid locking (even implicitly by e.g. calling DispatchQueue.sync or explicitly using

NSLock or objc_sync_enter) when inside a write transaction when possible. Because

write transactions run exclusively, they effectively acquire a write lock internally. As with all
locks, you need to pay close attention when multiple locks are involved. Always obtain
locks in the same order to avoid deadlocks. If you acquire a lock “X” inside a transaction,
you must ensure that your code does not start another write transaction while having the
lock “X”.

FAQ

Conceptual

Is ObjectBox based on SQL/SQLite?

No, ObjectBox is a standalone database designed and optimized for storing objects. For
example, there's no SQL, nor rows and columns. Benefits: simpler API and better
performance.

Another big difference is that SQLite is an embedded database only. While ObjectBox also
is an embedded database, it offers additional modes of operation like client/server and
data synchronization among several machines - from small devices to servers and the
cloud.

How is ObjectBox different from other solutions?

TL;DR Swift-first, performance, simple APIs

Swift first: The API is designed for Swift without an Objective-C legacy. For example there is
no need for @objc , no enforced base class for entities, and no wrappers needed for

optional types.
To give some background here, we started with a Objective-C(++) middle layer, but had this
huge turning point during development. We realized that putting Swift first required us to
take rather drastic measures and remove our Objective-C(++) code completely. We wrote
about that and the immediate benefits like struct support and a huge performance boost.

Performance: ObjectBox was built with performance in mind and with minimalism as a
leading principle. We believe we've built one of the most resource efficient databases that
exist. Of course, you should not just rely on what we claim, but see for yourself. Our
performance benchmarking code is open source.

Simple APIs: Browse through our docs using the menu on the left. We tried hard to give
developers like you a simple API for powerful features. Another example are entities
themselves, which are plain Swift objects without any "magic" that would break threading

https://objectbox.io/speed-increase-with-swift/
https://github.com/objectbox/objectbox-swift-performance

or cause values from being shown in the debugger, etc. With ObjectBox, you can use
objects across threads without restrictions. For example, you can defer loading objects to a
background thread and pass them to the UI thread to display them.

And by the way; we want your feedback: of course, ObjectBox is not perfect. We set our
goals high but we also fail at times. Let us know how we can improve. If you have
something specific in mind, please raise an issue on GitHub. And we're also happy if you
would send us general feedback on how we are doing (takes 1-2 minutes). Thank you!

Technical

Why are you not using Codable in ObjectBox?

ObjectBox uses a code generator, which does more than serializing objects into a binary
format. It manages an internal data model and lets you e.g. rename a Swift property
without breaking already stored objects. All of this happens at compile time, and gets
checked into version control, so each user's and developers' databases are compatible.
Codable happens at runtime, on each user's machine. Simply said, ObjectBox could not do
what it does with Codable.

Troubleshooting

Error message "Missing argument for parameter 'model'..." when
creating a new Store

TL;DR: build the project first.

ObjectBox's code generator generates a convenience initializer for you that doesn't need the
model parameter because it sets up your model for you. It does this after parsing all your
entities, which happens at build time. Thus, make sure to build your project at least once
after declaring your entities. Otherwise Xcode's CodeSense auto-completion will not
propose the right initializer in its list, and will display this erroneous error message.

https://github.com/objectbox/objectbox-swift/issues
https://docs.google.com/forms/d/e/1FAIpQLSd0neiviD0Yal0Tn7921w-XWI2d0ONpLm7TfVKp7OvwW2Tu2A/viewform?usp=sf_link

Error Message "Could not open env for DB (1)" in Sandboxed macOS App

A sandboxed macOS application must have at least one App Group set up in its target
settings under Signing and Capabilities. See The Sandbox on macOS for detailed
instructions. This error occurs if no app group can be found.

Error message "ObjectBox does not contain bitcode" when linking

ObjectBox currently does not contain Bitcode, as it generally is not needed and only
increases file sizes. You can still build for device and app store distribution by turning off
Bitcode for your application as well. As the error message goes on to explain, you do this
using the target's Enable Bitcode setting under Build Settings in Xcode (ENABLE_BITCODE).

If you have a strong need to obtain a version of ObjectBox with Bitcode, please let us know.

https://objectbox.io/feedback/

Advanced

Enums and Custom Types

Custom types allow entities to have properties of any type. This is based on mapping
custom classes to built-in types. ObjectBox recognizes the following built-in (Swift) types:

Int8, UInt81
Int16, UInt162
Int32, UInt323
Int64, Int, UInt64, UInt4
Float, Double5
Data, [UInt8]6
String7
Date8

Enums

ObjectBox has built-in support for RawRepresentable enums. All that is needed is an

annotation to tell ObjectBox to convert an enum:

enum TestEnum: Int {1
 case unknown = 02
 case first = 1003
 case second = 2004
 case third = 3005
}6

7
class EnumEntity: Entity {8
 var id: Id = 09
 // objectbox: convert = { "default": ".unknown" }10
 var custom: TestEnum11
}12

Specify a default value to use when the value in the database is missing or invalid as the
default argument to the // objectbox: convert annotation.

A database can have a missing value even for non-optional fields if you add a property to
your entity and then open a database that was written by an older version of your app that
did not have that field yet. A database may contain an invalid value if an older version of
your app opens a file created by a newer version of your app that has added a new case to
this enum.

When persisting enums, there are a couple of best practices:

Always assign explicit rawValues to each enum case: Implicitly-assigned rawValue s

are unstable, and can easily change the next time you edit your enum definitions.
Prepare for the unknown: Define an unknown enum value and specify it as the
default. It can serve to handle missing or unknown values. This will allow you to
gracefully handle cases like an old enum value getting removed without having to
constantly unwrap optionals.

You can leave away the "default" annotation if your property is an optional. In that case

nil will be the automatic default.

Enums in queries

QueryBuilder is unaware of enums. You have to use the enum's rawValue for queries.

So for the EnumEntity example above you would get users with the custom property of

second with the query condition

box.query { User.role == TestEnum.second.rawValue } .

Custom Property Converters

To add support for a custom type, you can map properties to one of the built-in types using
an // objectbox: convert annotation. You also need to provide a class to serve as a

property converter.

For example, you could define a color in your entity using a custom Color class and map

it to a String .

Here is an example mapping an enum to an Int manually:

class RoleConverter {1
 static func convert(_ enumerated: Role) -> Int {2
 return enumerated.rawValue3
 }4
 static func convert(_ num: Int?) -> Role {5
 guard let num = num else { return Role.default }6
 return TestEnum(rawValue: num) ?? Role.default7
 }8
}9

10
enum Role: Int {11
 case default = 012
 case author = 113
 case admin = 214
}15

16
class User: Entity, CustomDebugStringConvertible {17
 var id: Id = 018
 // objectbox: convert = { "dbType": "Int", "converter": "RoleConverter19
 var role = Role.default20
}21

22

Things to look out for

Be sure to correctly handle nil and invalid values: If you add a field to your entity later on,
old records in a database will not have a value for this field. Your converter will be handed a
nil value for those instead. Or if a user opens a database created with a newer version of

your app that supports additional values for an enum with an older version that doesn't
know about these, you will have to supply a fallback value from your converter (In the
above example, those are the two Role.default returns in convert(_: Int?)).

You must not interact with the database (such as using Box or Store) inside the

converter. The converter methods are called within a transaction, so for example getting or
putting entities into a box will fail.

If you implement your database-to-class converter method to not take an optional,
ObjectBox will supply an appropriate 0 value for missing values, Same as it would for the
underlying type without a converter.

Note: Make sure the converter is thread safe, because it might be called
concurrently on multiple entities.

List/Array types

At the moment it is not possible to use arrays with converters, apart from [UInt8] , which

is treated like Data . However, you could convert a List of String s to a JSON array

resulting in a single string for the database.

Alternately, you can replace arrays with relations and create a new entity for the array
elements. So, for example instead of

class Document {1
 var id: Id = 02
 var userNames: [String] // ObjectBox doesn't know how to store this3
}4

You would have two entities:

class Document {1
 var id: Id = 02
 var users: ToMany<User>3
}4

5
class User {6
 var id: Id = 07
 var document: ToOne<Document> = nil8
 var name: String9
}10

Custom types in queries

QueryBuilder is unaware of custom types. You have to use the raw database value for

queries.

So for the User example above you would get users with the role of admin with the

query condition box.query { User.role == Role.admin.rawValue } or

box.query { User.role == 2 } .

Data Model Updates

ObjectBox - Data Model Updates

ObjectBox manages its data model (schema) mostly automatically. The data model is
defined by the entity classes you define. When you add or remove entities or properties of
your entities, ObjectBox takes care of those changes without any further action from you.

For other changes like renaming or changing the type, ObjectBox needs extra information
to make things unambiguous. This works using unique IDs (UIDs) and an
// objectbox: uid annotation, as we will see below.

UIDs

ObjectBox keeps track of entities and properties by assigning them unique IDs (UIDs). All
those UIDs are stored in a file “model.json”, which you should add to your version control
system (e.g. git). If you are interested, we have in-depth documentation on UIDs and
concepts. But let’s continue with how to rename entities or properties.

In short: To make UID-related changes, put an // objectbox: uid annotation on the

entity or property and build the project to get further instructions.

Renaming Entities and Properties

So why do we need that UID annotation? If you simply rename an entity class, ObjectBox
only sees that the old entity is gone and a new entity is available. This can be interpreted in
two ways:

The old entity is removed and a new entity should be added, the old data is discarded.
This is the default behavior of ObjectBox.
The entity was renamed, the old data should be re-used.

So to tell ObjectBox to do a rename instead of discarding your old entity and data, you need
to make sure it knows that this is the same entity and not a new one. You do that by
attaching the internal UID to the entity.

The same is true for properties.

Now let’s walk through how to do that. The process works the same if you want to rename
a property:

How-to and Example

 Step 1: Add an empty // objectbox: uid annotation to the entity/property you want to

rename:

// objectbox: entity1
// objectbox: uid2
class MyName { ... }3

 Step 2: Build the project. The build will fail with an error message that gives you the current
UID of the entity/property:

error: No UID given for entity MyName. You can do the following:1
 [Rename] Apply the current UID using // objectbox: uid = 176642
 [Change/Reset] Apply a new UID using // objectbox: uid = 186883

4

 Step 3: Apply the UID from the [Rename] section of the error message to your
entity/property:

// objectbox: entity1
// objectbox: uid = 176642
class MyName { ... }3

 Step 4: The last thing to do is the actual rename on the language level (Java, Kotlin, etc.):

// objectbox: entity1
// objectbox: uid = 176642
class MyNewName { ... }3

 You can now use your renamed entity/property as expected and all existing data will still
be there.

 Note: Instead of the above you can also find the UID of the entity/property in the
ObjectBox model.json file yourself and add it together with the
// objectbox: uid annotation before renaming your entity/property.

Changing Property Types

When you want to change the type of a property, you must tell ObjectBox to create a new
property internally. This is because ObjectBox cannot migrate your data, so simply
changing the type may lead to data loss. You can do this in two ways:

Just rename the property, so it is treated as a new property (this only works if the
property has no // objectbox: uid annotation already):

// old:1
var year: String2
// new:3
var yearInt: Int4

Tell ObjectBox to use a new UID for the property. Let’s walk through how to do that:

How-to and Example

Step 1: Add the // objectbox: uid annotation to the property where you want to change

the type:

// objectbox: uid1
var year: String2

 Step 2: Build the project. The build will fail with an error message that gives you a newly
created UID value:

error: No UID given for property year of entity MyName. You can do the fol1
 [Rename] Apply the current UID using // objectbox: uid = 156162
 [Change/Reset] Apply a new UID using // objectbox: uid = 186883

 Step 3: Apply the UID from the [Change/Reset] section to your property:

// objectbox: uid = 186881
var year: Int2

 You can now use the property in your entity as if it were a new one.

Installation without CocoaPods or Carthage

Download

You can get the newest ObjectBox-framework.zip from our GitHub Releases page:

Unpack the ZIP-archive and put the entire folder somewhere in your project's folder (for
example, if your project is in
/Users/vivien/RecordsDatabase/RecordsDatabase.xcodeproj , you could put ObjectBox

at /Users/vivien/RecordsDatabase/ObjectBox).

Add the Framework to your Project

https://github.com/objectbox/objectbox-swift/releases

Like with any embedded framework, you link to it and copy it into your application:

Find the ObjectBox.framework for your platform from the
ObjectBox/Carthage/Build/ folder (e.g.

ObjectBox/Carthage/Build/iOS/ObjectBox.framework).

Open your project's target settings by clicking the little blue project icon at the top of the
Project Navigator in Xcode.
Select the General tab for your target and find the Frameworks, Libraries and
Embedded Content section.
Drag the ObjectBox.framework into the list and choose "Embed & Sign" from the popup
at its right.
macOS and Xcode 10 and earlier only:

Go to the Build Phases tab and add a Copy Files build phase.
Select Frameworks as the Destination from the popup.
Drag the ObjectBox.framework into it.

You're done, your project is linking to ObjectBox.

Setup Script

Then open Terminal and run

gem install xcodeproj
/path/to/ObjectBox/setup.rb /path/to/MyProject.xcodeproj

where /path/to/ is again where your project is, like /Users/vivien/RecordsDatabase/

above.

The first call installs a helper library needed by the installation script to do its work. This
library is not needed once you have run the script. Nobody else using your project needs to
do this.

Done

You can now open your project and follow the rest of this tutorial.

The Sandbox on macOS

The Sandbox on macOS

You do not need to perform any of these steps for an application running on iOS,
or if your macOS application is not sandboxed.

Currently, use of ObjectBox from a sandboxed macOS application requires you to set up at
least one App Group for ObjectBox to be able to open a database, in addition to whatever
you would normally have done to gain access to the destination folder under the sandbox:

1. Open your project in Xcode.
2. Select the project icon at the very top of the Project Navigator.
3. Select the Signing & Capabilities tab where you turned on App Sandbox.
4. Click the + Capability button and double-click App Groups.
5. If the App Groups list is empty, click the little "+" icon to add one.

You should now see a list entry like FGDTDLOBXDJ.$(TeamIdentifierPrefix) . If you only

see $(TeamIdentifierPrefix) , you still need to set up your team and code-signing under

General.

That is all, ObjectBox will pick up the App Group Identifier without any additional work.

If you're still using Xcode 10, Signing & Capabilities will just be called
Capabilities., and App Groups is a section you turn on with a switch, there is no +
Capability button.

Meta Model, IDs and UIDs

Unlike relational databases like SQLite, ObjectBox does not require you to create a database
schema. That does not mean ObjectBox is schema-less. For efficiency reasons, ObjectBox
manages a meta model of the data stored. This meta model is actually ObjectBox’s
equivalent of a schema. It includes known object types including all properties, indexes, etc.
A key difference to relational schemas is that ObjectBox tries to manage its meta model
automatically. In some cases it needs your help. That’s why we will look at some details.

IDs

In the ObjectBox meta model, everything has an ID and an UID. IDs are used internally in
ObjectBox to reference entities, properties, and indexes. For example, you have an entity
“User” with the properties “id” and “name”. In the meta model the entity (type) could have
the ID 42, and the properties the IDs 1 and 2. Property IDs must only be unique within their
entity.

Note: do not confuse object IDs with meta model IDs: object IDs are the values
of th Id or EntityId<MyEntity> property (see Object IDs in basics). In

contrast, all objects are instances of the entity type associated with a single
meta model ID.

ObjectBox assigns meta model IDs sequentially (1, 2, 3, 4, …) and keeps track of the last
used ID to prevent ID collisions.

UIDs

As a rule of thumb, for each meta model ID there’s a corresponding UID. They complement
IDs and are often used in combination (e.g. in the JSON file). While IDs are assigned

sequentially, UIDs are a random long value. The job of UIDs is detecting and resolving
concurrent modifications of the meta model.

A UID is unique across entities, properties, indexes, etc. Thus unlike IDs, a UID already used
for an entity may not be used for a property. As a precaution to avoid side effects,
ObjectBox keeps track of “retired” UIDs to ensure previously used but now abandoned UIDs
are not used for new artifacts.

JSON for consistent IDs

ObjectBox stores a part of its meta model in a JSON file. This file should be available to
every developer and thus checked into a source version control system (e.g. git). The main
purpose of this JSON file is to ensure consistent IDs and UIDs in the meta model across
devices.

This JSON file is stored in the file model-TargetName.json . For example, look at the file

from the ObjectBox example project:

{1
 "_note1" : "KEEP THIS FILE! Check it into a version control system (VCS) 2
 "_note2" : "ObjectBox manages crucial IDs for your object model. See doc3
 "_note3" : "If you have VCS merge conflicts, you must resolve them accor4
 "entities" : [5
 {6
 "id" : "1:712683617673955584",7
 "lastPropertyId" : "2:5025387500910526208",8
 "name" : "Author",9
 "properties" : [10
 {11
 "flags" : 1,12
 "id" : "1:6336800942024279296",13
 "name" : "id",14
 "type" : 615
 },16
 {17
 "id" : "2:5025387500910526208",18
 "name" : "name",19
 "type" : 920
 }21
],22

https://github.com/objectbox/objectbox-swift

 "relations" : [23
24

]25
 },26
 {27
 "id" : "2:5608901830082711040",28
 "lastPropertyId" : "6:6001769173142034944",29
 "name" : "Note",30
 "properties" : [31
 {32
 "flags" : 1,33
 "id" : "1:7180411752564202752",34
 "name" : "id",35
 "type" : 636
 },37
 {38
 "id" : "2:249105953415333376",39
 "name" : "title",40
 "type" : 941
 },42
 {43
 "id" : "3:5661281725891017216",44
 "name" : "text",45
 "type" : 946
 },47
 {48
 "id" : "4:8342334437465755392",49
 "name" : "creationDate",50
 "type" : 1051
 },52
 {53
 "id" : "5:8881960381068888832",54
 "name" : "modificationDate",55
 "type" : 1056
 },57
 {58
 "flags" : 8,59
 "id" : "6:6001769173142034944",60
 "indexId" : "1:6069708401898380544",61
 "name" : "author",62
 "relationTarget" : "Author",63
 "type" : 1164
 }65
],66
 "relations" : [67

68
]69
 }70
],71
 "lastEntityId" : "2:5608901830082711040",72
 "lastIndexId" : "1:6069708401898380544",73

 "lastRelationId" : "0:0",74
 "lastSequenceId" : "0:0",75
 "modelVersion" : 5,76
 "modelVersionParserMinimum" : 5,77
 "retiredEntityUids" : [78

79
],80
 "retiredIndexUids" : [81

82
],83
 "retiredPropertyUids" : [84

85
],86
 "retiredRelationUids" : [87

88
],89
 "version" : 190
}91

As you can see, the id attributes combine the ID and UID using a colon. This protects

against faulty merges. When applying the meta model to the database, ObjectBox will
check for consistent IDs and UIDs.

Meta Model Synchronization

At build time, ObjectBox gathers meta model information from the entities (classes that
conform to the Entity protocol or are annotated objectbox: Entity) and the JSON file.

The complete meta model information is written into the
generated/EntityInfo-TargetName.generated.swift file.

Then, at runtime, the meta model assembled in EntityInfo-TargetName.generated.swift

is synchronized with the meta model inside the ObjectBox database (file). UIDs are the
primary keys to synchronize the meta model with the database. The synchronization
involves a couple of consistency checks that may fail when you try to apply illegal meta
data.

Stable Renames using UIDs

At some point you may want to rename an entity class or just a property. Without further
information, ObjectBox will remove the old entity/property and add a new one with the new
name. This is actually a valid scenario by itself: removing one property and adding another.
To tell ObjectBox it should do a rename instead, you need to supply the property's previous
UID.

Add an // objectbox: uid annotation without any value to the entity or property you

want to rename and trigger a project build. The build will fail with a message containing the
UID you need to apply to the // objectbox: uid annotation.

Also check out this how-to guide for hands-on information on renaming and resetting.

Resolving Meta Model Conflicts

In the section on UIDs, we already hinted at the possibility of meta model conflicts. This is
caused by developers changing the meta model concurrently, typically by adding entities or
properties. The knowledge acquired in the previous paragraphs helps us to resolve the
conflicts.

The Nuke Option

During initial development, it may be an option to just delete the meta model and all
databases. This will cause a fresh start for the meta model, e.g. all UIDs will be regenerated.
Follow these steps:

Delete the JSON file for the given target(s) (model-TargetName.json)

Build the project to generate a new JSON file from scratch
Commit the recreated JSON file to your VCS (e.g. git)
Delete all previously created ObjectBox databases (e.g. for iOS, delete the app from
your home screen, or delete the file from your application's container in the simulator or
on macOS)

While this is a simple approach, it has its obvious disadvantages and is not an option once
an app has been published.

Manual conflict resolution

Usually, it is preferred to edit the JSON file to resolve conflicts and fix the meta model. This
involves the following steps:

Ensure IDs are unique: in the JSON file the id attribute has values in the format
“ID:UID”. If you have duplicate IDs after a VCS merge, you should assign a new ID (keep
the UID part!) to one of the two. Typically, the new ID would be “last used ID + 1”.
Update last ID values: for entities, update the attribute “lastEntityId”; for properties,
update the attribute “lastPropertyId” of the enclosing entity
Check for other ID references: do a text search for the UID and check if the ID part is
correct for all UID occurrences

To illustrate this with an example, let's assume the last assigned entity ID was 41. Thus the
next entity ID will be 42. Now, the developers Alice and Bob add a new entity without
knowing of each other.

Alice adds a new entity “Ant” which is assigned the entity ID 42.

At the same time, Bob adds the entity “Bear” which is also assigned the ID 42.

After both developers committed their code, the ID 42 does not uniquely identify an entity
type (“Ant” or “Bear”?). Furthermore, in Alice’s ObjectBox the entity ID 42 is already wired to
“Ant” while Bob’s ObjectBox maps 42 to “Bear”.

UIDs make this situation resolvable. Let’s say the UID is 12345 for “Ant” and 9876 for
“Bear”. Now, when Bob pulls Alice’s changes, he is able to resolve the conflict: He manually
assigns the entity ID 43 to “Bear” and updates the lastEntityId attribute accordingly to
“43:9876” (ID:UID). After Bob commits his changes, both developers are able to continue
with their ObjectBox files.

Customizing Code Generation

Although you should generally not need to, you can adjust the behavior of ObjectBox's code
generator by passing it additional arguments.

The general procedure is the same: Open the [OBX] Update Sourcery Generated Files build
phase for your target in Xcode and edit the shell script there. Usually it looks something like:

"$PODS_ROOT/ObjectBox/generate_sources.sh" -- --output "$PROJECT_DIR/gener1
 --model-json "$PROJECT_DIR/mode2

where TARGETNAME is the name of your target.

Note the extra two dashes, which help the script distinguish arguments to be forwarded to
the code generator from arguments directly to the script. You only need one double-dash at
the start, even when passing multiple options to the script.

Controlling Output File Names

If you have several different targets in your project and want them to share the same model,
you can customize the names and paths for the model.json and

EntityInfo.generated.swift files by changing the script to use the same name for these

files:

"${PODS_ROOT}/ObjectBox/generate_sources.sh" -- --output "${PROJECT_DIR}/g1
 --model-json "${PROJECT_DI2

In this example, EntityInfo.generated.swift and model.json without the target name

in them.

Modifying the Module Name

Or if you wanted to control the Swift module name under which the generated source code
should end up, you would do this by telling the script to forward the --xcode-module

option to the code generator:

"${PODS_ROOT}/ObjectBox/generate_sources.sh" -- --xcode-module JennasModule

Where JennasModule would be the module name to use.

Specifying Access Control for Generated Code

If you are writing a framework and want to export your entity classes from it, you will need
to make the generated code public. You do this similarly, by adding the --visibility

option:

"${PODS_ROOT}/ObjectBox/generate_sources.sh" -- --visibility public

Anonymous Build Statistics

The code generator sends some anonymous usage statistics during build (on the machine
you are building on, never inside your app!). If you do not wish this information to be
collected, you can pass the following option to Sourcery:

"${PODS_ROOT}/ObjectBox/generate_sources.sh" -- --no-statistics

The following information is collected:

An anonymous random GUID identifying the installation of ObjectBox
The number of builds
A hash of the target's namespace name
OS version, ObjectBox version, Deployment OS, architecture and versions
System country and language setting
CI system the build is run under

The code generator will try to batch this information together so there is at most one
request sent per day.

Other Options

It is not recommended to customize any other options, as they are subject to change, but
should you need to do so, you can obtain a list by asking the code generator directly by
typing the following into Terminal:

/path/to/ObjectBox/Sourcery.app/Contents/MacOS/Sourcery --help

Which will print a syntax description for the code generator.

Getting Started Using ObjectBox in Your Project /getting-started

The setup.rb Script

If you are using the provided setup.rb script, you do not need to do any of

these steps. This section is mostly of interest for people who want to know
what that script does behind the scenes or who for some reason can not use the
script.

ObjectBox uses a code generator to generate boilerplate code that passes information
about your objects to the library. We chose code generation over fat inheritance trees so you
can write plain Swift objects and just use these.

The setup.rb script does the following things to ensure the code generator is run

transparently whenever you build your project:

1. Adds a build phase that runs the code generator to your project.
2. Adds the generated source files to your project

Adding the Sourcery Build Phase to Your Project

In your Xcode project, add a "New Run Script Phase" and make sure it comes above the
Compile Sources phase of your project. The code generator needs to generate the code you
want to compile first.

We call the Build Phase "[OBX] Update Sourcery Generated Files".

Enter the following script into this build phase:

"${PROJECT_DIR}/ObjectBox/generate_sources.sh"

https://swift.objectbox.io/advanced/sourcery#adding-the-sourcery-build-phase-to-your-project
https://swift.objectbox.io/advanced/sourcery#adding-the-generated-files-to-your-project

The above example assumes you've extracted the files from the ObjectBox release on
Github into a folder named ObjectBox next to your project. If you had a folder named

external for all external dependencies next to a myproject folder that contains your

project, that line might read:

"${PROJECT_DIR}/../external/ObjectBox/generate_sources.sh"

You get the picture. In general, it is a good idea to use project-relative paths, so anyone
checking out your project can run it, no matter where they keep their checkouts, or what
their username.

Adding the Generated Files to Your Project

Build your project once, so it can create the generated/EntityInfo.generated.swift file

for you. It will not contain much of interest, yet, but now that the generated/ directory and

its contents exist, you can drag them into your Xcode project so they get compiled as well
(make sure you add folders as "groups", not as "folder references").

You now have a working ObjectBox setup in your project and should be able to follow the
rest of the instructions in our Getting Started section.

