
ObjectBox Go

ObjectBox Go

This is the ObjectBox documentation for our Go API. We strive to provide you with the
easiest and fastest solution to store and retrieve data.

Your feedback on ObjectBox and this documentation is very welcome. Use the "Was this
page helpful?" smiley at the end of each page or send us your comments to
contact[at]objectbox.io - thank you! :)

Changelog

v1.1.2 (2020-03-18)

ensure Query finalizer is only executed by Go GC after a native call finishes

v1.1.1 (2020-02-14)

use temp directories in tests to prevent failure in recent Go versions checking-out
modules as read-only

v1.1.0 (2019-12-16)

add Box Insert and Update methods with stricter semantics than Put

add AsyncBox with Put , Insert , Update , Remove

add Query order and parameter alias support - see Queries docs for more info
Code generator improvements

handle type-checker errors more gracefully (don't fail on failures in unneeded
imports)
add clean command-line option to remove all generated files

time.Time will automatically use a built in converter to Unix timestamp

(milliseconds)
improve model.json file diff-level compatibility with other language bindings
embedded struct and to-one relations cycle detection

support changing property type and resetting its stored value
nil check for embedded pointer structs in the generated code
minor bug fixes when the generated code wouldn't compile in some edge cases

update to the latest ObjectBox-C library v0.8.1
deprecate box.PutAsync() in favor of box.async().Put() i.e. using AsyncBox

mark byte properties as unsigned

fix getters on objects with missing relations and non-existent IDs in GetMany

better windows installation experience using a PowerShell script
make golint happier :)

v1.0.0 (2019-07-16)

This is quite a big release, bringing some new features and cleaning up the API.

explicit transaction support via ObjectBox::RunInReadTx and

ObjectBox::RunInWriteTx

Go Modules support
add objectbox namespace to tags to align with reflect.StructTag.Get unofficial

spec
optional lazy loading on to-many relations - lazy annotation

box additions:
GetMany , RemoveMany , RemoveIds , ContainsIds , RemoveIds

to-many relation auxiliary methods: RelationIds , RelationPut ,

RelationRemove , RelationReplace

switch default/recommended go:generate entity generator command from

objectbox-gogen to

//go:generate go run github.com/objectbox/objectbox-go/cmd/objectbox-gogen

quite a few internal changes, renames and other refactorings (e.g. renamed PutAll to

PutMany , removed Cursor , aligned model JSON with other bindings, ...)

v0.9.0 (2019-04-24)

Fixed macOS build and 32-bit query support.
Minor refactoring/linter issues

v0.9.0-rc (2019-02-22)

As we queued up quite a few changes, we're doing a release candidate first for you to test:

Improved relations support
Embedded structs
Custom value-converter to store unsupported types & structs that can't be
inlined/prefixed
Recognize and handle type aliases and named types used as entity fields
New Box methods: CountMax(), IsEmpty(), Contains() and PutAsyncWithTimeout()
Query support AND & OR (combine conditions)
New Query methods: Limit, Offset
New Query methods: Set*Params (type-based) - to run a cached query with custom
parameters
Query LT|GT|Between support for unsigned numbers
Support numeric string ID in the entity
Support for []string as a field type

Optional pass/return-by-value for slice-of-structs in the generated code
Change strings to use hash-based instead of value-based indexes by default
A new option to AlwaysAwaitAsync that can be enabled during initialization

v0.8.0 (2018-12-06)

New Query API
Box and Query do not require manual closing anymore
Support for renaming entities and their properties using UIDs

v0.7.1 (2018-11-30)

Fixed wrong mapping for Go types (u)int and (u)int8. Luckily we noticed this very early:
if you used those types in previous versions, please delete old database files.
Transactions are now safely aborted in case of panics

v0.7.0 (2018-11-29)

Changed file name of generated code, e.g. file endings for model is now ".obx.go"

Foundation for all query conditions (final query API will come with the next version)
Put(object) now assigns the new id to the object itself

v0.6.0 (2018-11-28)

Initial public release

Installation

We're trying to make the installation experience smooth for everyone. In case you're getting
stuck or are finding some steps hard to follow, please reach out to us, e.g. by creating a
GitHub issue or through our Contact form. Thanks!

Linux/macOS

This section describe the installation on Linux or macOS, if you're using Windows, please
skip to the Installation on Windows section.

The main prerequisite to using ObjectBox in Go is the ObjectBox binary library (.so, .dylib
depending on your platform) which actually implements the database functionality.

We are using CGO which requires you to have a C/C++ compiler, such as gcc or clang ,

installed. You can try executing one of following commands in terminal to check if it's
already available and working: $CC --version or gcc --version or clang --version .

If any of the commands works fine (no need for all of them to work), you should be good to
go. Otherwise, please gcc or clang according to the instructions for your system (e.g.

sudo apt install gcc on Ubuntu).

There's currently a known issue on some ARM platforms, see Raspberry Pi 3 & 4
fallback.

Quick installation

The fastest way to install is by using our installation script. Execute the following
command in your project directory. If that doesn't work for you, you can skip to the manual
installation bellow.

bash <(curl -s https://raw.githubusercontent.com/objectbox/objectbox-go/mast

https://github.com/objectbox/objectbox-go/issues
https://objectbox.io/contact/

Go modules based project

Getting started /getting-started

Manual installation

C binary library
You can run the following download.sh script (press Y to install the library to a system-

wide folder when it asks you). you can remove the temporary "objectboxlib" directory
created by this step afterwards.

mkdir objectboxlib && cd objectboxlib1
bash <(curl -s https://raw.githubusercontent.com/objectbox/objectbox-c/mas2

Go package dependency

If your project is using a go.mod file to keep track of the dependencies, you don't

need to install anything else and you can just start using ObjectBox by importing it
in your source code:

import "github.com/objectbox/objectbox-go/objectbox"

 Legacy projects without a go.mod file

In case you're not using Go modules, you can install ObjectBox using following
commands:

go get -u github.com/objectbox/objectbox-go/...1
go get -u github.com/google/flatbuffers/go2

A package dependency is set up automatically if you've used the "Quick
installation" method using the install.sh script

Getting started /getting-started

Raspberry Pi 3 & 4 fallback

You may encounter an issue on some ARM platforms (seen this on Raspberry Pi 3 & 4) with
the default native library installed by the script. Also, the issue seems to only occur when
running natively, not inside docker.

You can check your installation to see if you encounter crashes (SIGBUS/SIGSEGV) by
executing go test github.com/objectbox/objectbox-go/...

As a workaround, you can install an ARMv6 version of the native library (instead of the
default ARMv7 the script picks) using the same script as in the manual installation, just
changing the arguments:

./download.sh 0.8.1 testing Linux armv6

Windows

The main prerequisite to using ObjectBox in Go is the ObjectBox binary DLL which actually
implements the database functionality. We are using CGO which requires you to have
MinGW gcc in PATH, e. g. http://tdm-gcc.tdragon.net/ - in case you don't have MinGW

installed yet, please do so first.

Quick installation

You can use the following PowerShell script to help you with installation of the library to the
right folders:

download the script: (right click and "Save link as", the location doesn't matter)
install.ps1
run the script - either double click or right click and "Run in PowerShell" - depends on
your settings.
the script will guide you through the installation steps.

Manual installation

In case you couldn't install fully using the script (e.g. it didn't find your MinGW installation),
you can try to finish the installation manually

1. In order to compile your program, you need to copy the downloaded
download/bjectbox.dll to the MinGW library directory, e. g. C:\TDM-GCC-64\lib

2. To run the program, you either need to have the objectbox.dll library in the same

folder as the compiled program, have its location (e. g. C:\TDM-GCC-64\lib in Path

environment variable), or copy it to the system library directory c:\Windows\System32

Go package dependency

http://tdm-gcc.tdragon.net/
https://raw.githubusercontent.com/objectbox/objectbox-go/master/install.ps1

Go modules based project

If your project is using a go.mod file to keep track of the dependencies, you don't

need to install anything else and you can just start using ObjectBox by importing it
in your source code:

import "github.com/objectbox/objectbox-go/objectbox"

Getting started /getting-started

Distributing

Don't forget to include the objectbox.dll with your program when distributing/packaging

for installer. Having it in the same directory as your program binary should be enough.

Getting started

Creating an Entity

Using ObjectBox in your project is fairly straight-forward.

First of all, let's define an Entity which is just a struct . It could be located basically

anywhere but to keep our project structure clean, let's have it in a
internal/model/task.go i. e. model package.

internal/model/task.go

package model1
2

//go:generate go run github.com/objectbox/objectbox-go/cmd/objectbox-gogen3
4

type Task struct {5
 Id uint646
 Text string7
 DateCreated int648
 DateFinished int649
}10

Note that Id uint64 is recognized by ObjectBox to contain an ID field which

gives us a direct access to the stored Tasks objects by their ID.

Alternatively if your ID field is named differently, you can annotate it with
`objectbox:"id"`.
For more information see Entity Annotations.

Having the entity file, we can run bindings generator to get the necessary task.obx.go

cd my-project-dir1
go generate ./...2

The generated bindings code has two main competencies:

provide Entity model (schema) to the ObjectBox
convert between internal object representation (FlatBuffers) and our struct Task

Additionally to the task.obx.go there's an objectbox-model.json which

holds information about the model and objectbox-model.go which defines a

model initialization function. All these files should be committed in source
control along with the rest of your code.

Initializing ObjectBox

To use ObjectBox in our main application code, we use Builder and give it model

information and optionally some other settings. The code with the model information is
generated by the ObjectBox and you just need to use in your code:

import (1
 "github.com/objectbox/objectbox-go/objectbox"2
 "github.com/objectbox/objectbox-go/examples/tasks/internal/model"3
)4

5
func initObjectBox() *objectbox.ObjectBox {6
 objectBox, err := objectbox.NewBuilder().Model(model.ObjectBoxModel()).B7
 return objectBox8
}9

Working with Object Boxes

Bet you wondered where our name comes from :)

From ObjectBox you vend Box instances to manage your entities. While you can have
multiple Box instances of the same type (for the same Entity) "open" at once, it's usually
preferable to just use one instance and pass it around your code.

main.go

func main() {1
 // load objectbox2
 ob := initObjectBox()3
 defer ob.Close() // In a server app, you would just keep ob and close o4
 5
 box := model.BoxForTask(ob)6
 7
 // Create8
 id, _ := box.Put(&model.Task{9
 Text: "Buy milk",10
 })11
 12
 task, _ := box.Get(id) // Read13
 task.Text += " & some bread"14
 box.Put(task) // Update15
 box.Remove(task) // Delete16
}17

Wherever you have access to a Box, you can use it to persist objects and fetch objects from
disk. Boxes are thread safe. Here are some of the basic operations:

Put: Persist an object, which may overwrite an existing object with the same ID. In other
words, use Put to insert or update objects. When put succeeds, an ID will be assigned

to the entity.
Get: When you have an object's ID, you can get to the object very efficiently using Get .

It will return nil & error in case an error occurred and nil without any error if the

object doesn't exist.
To get all objects of a type, use GetAll which returns a slice.

Remove: Deletes a previously persisted object from its box. Use RemoveAll to delete

all objects and empty the box.
Count: The number of objects stored in this box.

Task-list example application

To see it all put together, have a look at the Task-List application example in our git
repository:
https://github.com/objectbox/objectbox-go/tree/master/examples

https://github.com/objectbox/objectbox-go/tree/master/examples

Transactions

Basics

ObjectBox is a fully transactional database satisfying ACID properties. A transaction can
group several operations into a single unit of work that either executes completely or not at
all. If you are looking for a more detailed introduction to transactions in general, please
consult other resources like Wikipedia on database transactions.

You may not notice it, but almost all interactions with ObjectBox involve transactions. For
example, if you call box.Put() a write transaction is used. Also if you box.Get() an

object or query for objects, a read transaction is used. All of this is done under the hood and
transparent to you. It may be fine to completely ignore transactions altogether in your app
without running into any problems. With more complex apps however, it’s usually worth
learning transaction basics to make your app more consistent and efficient.

Explicit transactions

All ObjectBox operations run in implicit transactions – unless an explicit transaction is in
progress. In the latter case, multiple operations share the (explicit) transaction. In other
words, with explicit transactions you control the transaction boundary. Doing so can greatly
improve efficiency and consistency in your app.

The ObjectBox::RunInReadTx() and ObjectBox::RunInWriteTx() take a function as

and argument and run it inside a transaction (read-only or a write transaction, respectively).

There are multiple advantages of explicit transactions:

you can perform any number of operations and use objects of multiple boxes, while
having a consistent view of the data,
running multiple updates/inserts is faster because it doesn't involve starting an implicit
transaction each time,
being able to "roll-back" a transaction when an error occurs, potentially discarding
changes from multiple updates.

https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Database_transaction

Example for a write transaction which just inserts 1 000 000 objects:

ob.RunInWriteTx(func() error {1
 for i := 1000000; i > 0; i-- {2
 box.Put(&iot.Event{})3
 }4
 return nil // return no error so the transaction is not rolled back5
})6

Understanding transactions is essential to mastering the database performance. If you just
remember one sentence on this topic, it should be this one: a write transaction has its price,
and it's the same whether it's implicit or explicit.

Committing a transaction involves syncing data to the physical storage, which is a
relatively expensive operation for databases. Only when the file system confirms that all
data has been stored in a durable manner (not just memory cached), the transaction can be
considered successful. This file sync required by a transaction may take a couple of
milliseconds. Keep this in mind and try to group several operations (e.g. Put calls) in one

transaction.

Read Transactions

In ObjectBox, read transactions are cheap. In contrast to write transactions, there is no
commit and thus no expensive sync to the file system. Operations like Get , Count , and

queries run inside an implicit read transaction if they are not called when already inside an
explicit transaction (read or write). Note that it is illegal to Put when inside a read

transaction.

While read transaction are much cheaper than write transactions, there is still some
overhead to start a read transaction. Thus, for a high number of reads (e.g. hundreds, in a
loop), you can improve performance by grouping those reads in a single read transaction
(see explicit transactions below).

Multiversion concurrency

ObjectBox gives developers Multiversion concurrency control (MVCC) semantics. This
allows multiple concurrent readers (read transactions) which can execute immediately
without blocking or waiting. This is guaranteed by storing multiple versions of (committed)
data. Even if a write transaction is in progress, a read transaction can read the last
consistent state immediately. Write transactions are executed sequentially to ensure a
consistent state. Thus, it is advised to keep write transactions short to avoid blocking other
pending write transactions. For example, it is usually a bad idea to do networking or
complex calculations while inside a write transaction. Instead, do any expensive operation
and prepare objects before entering a write transaction.

Note that you do not have to worry about making write transactions sequential yourself. If
multiple threads want to write at the same time (e.g. via Box::Put or

ObjectBox::RunInWriteTx), one of the treads will be selected to go first, while the other

threads have to wait. It works just like a mutex.Lock()

Locking inside a Write Transaction

Avoid locking (e.g. via mutex.Lock()) when inside a write transaction when

possible.

Because write transactions run exclusively, they effectively acquire a write lock internally.
As with all locks, you need to pay close attention when multiple locks are involved. Always
obtain locks in the same order to avoid deadlocks. If you acquire a lock “X” inside a
transaction, you must ensure that your code does not start another write transaction while
having the lock “X”.

https://en.wikipedia.org/wiki/Multiversion_concurrency_control

Entity Annotations

ObjectBox - Database Persistence with Entity Annotations

ObjectBox is a database that persists objects. For a clear distinction, we sometimes call
those persistable objects entities. To let ObjectBox know which structs are entities you add
go:generate command to their source file and annotations (Go tags) to some fields. Then
ObjectBox can do its magic with your entities.

Here is an example:

//go:generate go run github.com/objectbox/objectbox-go/cmd/objectbox-gogen1
2

type Task struct {3
 Id uint644
 Text string5
 DateCreated int646
 DateFinished int647
}8

When you run go generate ./... in your project, it finds all files with a

//go:generate comment and executes the program in that comment,

objectbox-gogen . This means you can include multiple entities (structs) inside

a single file without repeating the comment. Having multiple entities in a single
file may help increase generation performance on large projects because the
generator can cache information about referenced types during runtime.

id - Object IDs

 In ObjectBox, every object has an ID of type uint64 to efficiently get or reference objects.

ObjectBox recognizes this automatically if your entity has a uint64 field named ID (case

insensitive).

type Task struct {1
 Id uint642
}3

Alternatively, you can use the id annotation on a uint64 property with any name in your

entity:

type Group struct {1
 GroupID uint64 `objectbox:"id"`2
}3

Note that in case this Id is zero on an instance you are inserting, ObjectBox considers the
object as a new one during Put() and automatically assigns an ID.

If your application requires other ID types (such as a string UID given by a server), you can
model them as standard properties. An example:

type Task struct {1
 Id uint64 `objectbox:"id"`2
 Uid string3
}4

index - property Indexes

Annotate a property with `objectbox:"index"` to create a database index for the
corresponding database column. This can improve performance when querying for that
property.

type Task struct {1
 Uid string `objectbox:"index"`2
}3

Indexing is currently not supported for byte[] , float and double

Index types (String)

ObjectBox can use either actual value of the property or its hash to build an index. Because
string properties are typically taking more space than scalar values, ObjectBox is using

hash for strings by default.

You can instruct ObjectBox to use a different index type :

type Task struct {1
 Uid string `objectbox:"index:hash64"`2
}3

ObjectBox supports these index types:

Not specified Uses best index based on property type (uses hash for string ,

value for others).

"value" Uses property values to build index. For String, this may require more

storage than a hash-based index.
"hash" Uses 32-bit hash of property values to build index. Occasional collisions may
occur which should not have any performance impact in practice. Usually a better
choice than hash64 , as it requires less storage.

"hash64" Uses long hash of property values to build the index. Requires more storage
than hash and thus should not be the first choice in most cases.

Limits of hash-based indexes: Hashes work great for equality checks, but not for "starts
with" type conditions. If you frequently use those, you should use value-based indexes

instead.

unique - unique constraints

Annotate a property with `objectbox"unique"` to enforce that values are unique before an
entity is inserted/updated:

type Task struct {1
 Uid string `objectbox:"unique"`2
}3

A put() operation will abort and return an error if the unique constraint is violated.

Complex fields (structs)

When your field contains another struct that is not a Relation, ObjectBox will, by default,
store it embedded, using prefix-based field naming. The Task in the following example will

internally end up with four fields, "id", "meta_created", "meta_modified" and "text".

// NOTE this is be placed in a separate field because it's not an entity1
type Metadata struct {2
 Created int643
 Modified int644
}5

6
// this is an Entity, with code genereated using objectbox-gogen7
type Task struct {8
 Id uint649
 Meta Metadata10
 Text string 11
}12

inline

You can modify the behavior by specifying the struct fields to be "inlined" in which case, the
fields would be named "id", "created", "modified" and "text".

type Task struct {1
 Id uint642
 Meta Metadata `objectbox:"inline"`3
 Text string 4
}5

It's important to keep distinction between prefixed and inlined fields in mind if
you want to move fields around between two embedded/included structs or
rename them.

Other annotations

// `objectbox:"uid:1306759095002958910"`1
type Task struct {2
 Text string `objectbox:"name:text"`3
 Date uint64 `objectbox:"date"`4
 notes string `objectbox:"-"`5
 DateCreated int64 `objectbox:"date uid:7144924247938981575"`6
}7

converter

Defines converter for custom types, see Custom types docs for more information.

date

Informs ObjectBox that it should store the given property as a DateType - it expects
timestamp since UNIX epoch in milliseconds.

If you use a time.Time field, it's automatically recognized as a date and the code

generator will use the built-in converter and store the field internally as a Unix timestamp.

Because ObjectBox stores dates internally as Unix timestamps with millisecond
precision, the built-in converter falls-back to that precision when working with
time.Time struct.

If you require greater precision, define your own converter with any built-in
supported type that can accommodate your storage format (e.g. int , string ,

[]byte , etc.).

lazy

Specifies that the "To-Many" relation on the current field should not be called right away
when the object is read but manually, using GetRelated. See Relations docs for more
details.

link

Declares the struct field that is itself a struct (or a pointer to one) as a relation, instructing
ObjectBox to create a link between the Entity where this field is contained and the Entity of
the field (type of the struct field). See Relations docs for more details on how relations work
and how you can define them.

name

Lets you define under what name the property is stored in the database. This allows you to
rename the Go field without affecting the property name on the database level. To rename
the property in the DB, you should use the uid annotation instead.

type

Used in conjunction with converter to specify the underlying type stored in the database
(type returned by the converter). See Custom types docs for more information.

"-"

Marks properties that should not be persisted (saved into DB) and are only used in your
program during runtime.

Triggering generation

Once your entity schema is in place, you can trigger the code generation by running
go generate inside the directory that contains the files with the entities.

uid

ObjectBox keeps track of entities and properties by assigning them unique IDs (UIDs)
during the code-generation phase. All those UIDs are stored in a file
objectbox-model.json in your package, which you should add to your version control

system (e.g. git).

If you specify the `objectbox"uid:....."` tag on a property (or as a special comment on an
entity struct), ObjectBox would be able to uniquely identify it even after you change the
name and would update the database accordingly on the next application launch.

For more information, look at the following page dedicated to schema updates.

Schema changes /schema-changes

Additionally, If you are interested, we have in-depth documentation on UIDs and concepts in
the Java/Android docs.

https://docs.objectbox.io/advanced/meta-model-ids-and-uids

Queries

Using queries is simple: from your entity's Box , call Query() with conditions as

arguments:

query := box.Query(Device_.Location.HasPrefix("US-", false))1
devices, err := query.Find()2

Building queries

The query in the code above uses a function HasPrefix on a device location. Where does

this come from? ObjectBox generates a Device_ struct for you to reference available

properties conveniently. This also allows code completion in your IDE and avoids typos:
correctness is checked at compile time (string based queries would only be checked at run-
time).

Let's say you have the following entity defined in your package:

type Device struct {1
 Id uint642
 Name string3
 Location string4
 Profile uint325
}6

Using this input, the ObjectBox code generator creates a variable Device_ in the same

package:

var Device_ = struct {1
 Id *objectbox.PropertyUint642
 Name *objectbox.PropertyString3
 Location *objectbox.PropertyString4
 Profile *objectbox.PropertyUint325
}{...}6

You can use Device_ to construct type-specific conditions in place and combining them,

forming the full query. The following example looks for devices located in the U. S. with
profile number 42.

box.Query(Device_.Profile.Equals(42), Device_.Location.HasPrefix("US-", fals

Reusing Queries and Parameters

If you frequently run a Query you should cache the Query object and re-use it. To make a

Query more reusable you can change the values, or query parameters, of each condition

you added even after the Query is built. Let's see how.

Assume we want to find a list of User with specific FirstName values. First, we build a

regular Query with an equal() condition for FirstName . Because we have to pass an

initial parameter value to equal() but plan to override it before running the Query later,

we just pass an empty string:

var caseSensitive = false1
var query = box.Query(User_.FirstName.Equals("", caseSensitive))2

Now at some later point we want to actually run the Query . To set a value for the

FirstName parameter we call setStringParams() on the Query and pass the

FirstName property and the new parameter value:

query.SetStringParams(User_.FirstName, "Joe")1
joes, _ := query.Find()2

Alias/As

So you might already be wondering, what happens if you have more than one condition
using the same property? For this purpose you can assign each condition an alias by
calling Alias() right after specifying the condition:

var query = box.Query(1
 User_.Age.GreaterThan().Alias("min age"),2
 User_.Age.LessThan().Alias("max age"))3
 4
// Then use the alias when setting the parameter value5
query.SetInt64Params(objectbox.Alias("min age"), 50)6
query.SetInt64Params(objectbox.Alias("max age"), 100)7

There's also an alternative, syntax for a aliases that makes it easier to maintain the code
because it avoids repeating string constants:

var minAgeAlias = objectbox.Alias("min age")1
var maxAgeAlias = objectbox.Alias("max age")2
var query = box.Query(3
 User_.Age.GreaterThan().As(minAgeAlias),4
 User_.Age.LessThan().As(maxAgeAlias))5
 6
// Then use the alias when setting the parameter value7
query.SetInt64Params(minAgeAlias, 50)8
query.SetInt64Params(maxAgeAlias, 100)9

Limit, Offset, and Pagination

Sometimes you only need a subset of a query, for example the first 10 elements. This is
especially helpful (and resourceful) when you have a high number of entities and you
cannot limit the result using query conditions only. The built Query has .Offset() and

.Limit() methods to help you do that

query := box.Query(User_.FirstName.Equals("Joe", false))1
joes, err := query.Offset(10).Limit(5).Find()2

Offset(n uint64): the first n results are skipped.

Limit(n uint64): at most n results of this query are returned.

Ordering results

In addition to specifying conditions you can order the returned results:

query := box.Query(User_.FirstName.Equals("Joe", false), User_.Age.OrderDe1
joes, err := query.Find()2

You can combine multiple order parameters and options (some options are only available
for certain data types, e.g. strings have case-sensitive ordering option), such as:

query := box.Query(1
 User_.FirstName.Equals("Joe", false), 2
 User_.LastName.OrderDesc(false), // caseSensitive bool argument3
 User_.Age.OrderAsc()4
)5
joes, err := query.Find()6

Notable conditions/operators

In addition to expected conditions like Equals() , NotEquals() , GreaterThan() and

LessThan() there are also conditions like:

Between() to filter for values that are between the given two (inclusive)

In() and NotIn() to filter for values that match any in the given set,

HasPrefix() , HasSuffix() and Contains() for extended String filtering.

Working with query results

You have a few options how to handle the results of a query:

Find() returns a slice of the matching objects,

FindIds() fetches just the IDs of the matching objects as a slice, which can be more

efficient in case you don't need the whole object,
Remove() deletes all the matching objects from the database (in a single transaction),

Count() gives you the number of the objects that match the query,

Limit() and Offset() let you select just part of the result (e. g. for paging)

DescribeParams() is a utility function which returns a human-readable representation

of the query.

Querying linked objects (relations)

After creating a relation between entities, you might want to add a query condition for a
property that only exists in the related entity. In SQL this is solved using JOINs. ObjectBox
provides query links instead.
Let's see how this works using an example.

Assume there is a Person that can be associated with multiple Address entities:

//go:generate go run github.com/objectbox/objectbox-go/cmd/objectbox-gogen1
2

type Person struct {3
 Id uint644
 Name string5
 Address []*Address6
}7

8
type Address struct {9
 Id uint6410
 Street string11
 ZIP string12
}13

To get a Person with a certain name that also lives on a specific street, we need to query

the associated Address entities of a Person . To do this, use the

Person_.Address.Link(cs ...Conditions) method of the generated Person_ variable

to tell that the addresses relation should be queried and what conditions should be used

to filter the addresses:

// get all Person objects named "Elmo" which have an address on "Sesame St1
var query = BoxForPerson(ob).Query(2
 Person_.name.Equals("Elmo", true),3
 Person_.Address.Link(Address_.Street.Equals("Sesame Street", true)),4
)5
var elmosOnSesameStreet = query.Find()6

What if we want to get a list of Address instead of Person ? No problem, links are smart

enough to know there's also an implicit relation in the opposite direction. Note the different
box we're using here:

// get all Address objects on "Sesame Street" linked from a Person named "1
val builder = box.query().equal(Address_.street, "Sesame Street")2
var query = BoxForAddress(ob).Query(3
 Address_.Street.Equals("Sesame Street", true),4
 Person_.Address.Link(Person_.name.Equals("Elmo", true)),5
)6
var addressesSesameStreetWithElmo = query.Find()7

More to come

ObjectBox core can do much more with the queries, such as property queries, aliases, etc.
These are not yet supported by our Go API, but you can take a peek at
https://docs.objectbox.io/queries to get the idea what's coming in the future releases.

Feel free to open a feature request on GitHub if you have an idea or a proposal.

https://docs.objectbox.io/queries
https://github.com/objectbox/objectbox-go/issues

Schema changes

ObjectBox manages its data model (schema) mostly automatically. The data model is
defined by the entity structs you define. When you add or remove entities or properties of
your entities, ObjectBox takes care of those changes without any further action from you.

For other changes like renaming or changing the type, ObjectBox needs extra information
to make things unambiguous. This works using unique identifiers (UIDs) specified by the
uid annotation, as we will see below.

Renaming Entities and Properties

So why do we need that UID annotation? If you simply rename an entity struct, ObjectBox
only sees that the old entity is gone and a new entity is available. This can be interpreted in
two ways:

The old entity is removed and a new entity should be added, the old data is discarded.
This is the default behavior of ObjectBox.
The entity was renamed, the old data should be re-used.

So to tell ObjectBox to do a rename instead of discarding your old entity and data, you need
to make sure it knows that this is the same entity and not a new one. You do that by
attaching the internal UID to the entity.

For properties, the process is the same, but instead of the comment, you just use standard
Go tags. We are showing both cases in the following example.

 Step 1: Add an empty `objectbox:"uid"` annotation to the entity/property you want to
rename:

// `objectbox:"uid"`1
type OldEntityName struct {2
 Id uint643
}4

5

type Task struct {6
 Id uint647
 OldPropertyName string `objectbox:"uid"`8
}9

 Step 2: Re-generate ObjectBox code for the project using go generate ./... in your

project directory. The generation will fail with an error message that gives you the current
UID of the entity/property:

output for empty "uid" annotation on an entity

can't merge binding model information: uid annotation value must not be em1
(model entity UID = 1306759095002958910) on entity OldEntityName2

output for empty "uid" annotation on a property

can't merge binding model information: uid annotation value must not be em1
 [rename] apply the current UID 91413740174241601132
 [change/reset] apply a new UID 60501286738029958273

Note how for a property, the output is slightly different and, besides support for
renaming, it provides a newly generated UID you can use to effectively reset
(clean) the stored data on the property. See Reset data - new UID on a property
for more details.

 Step 3: Apply the UID printed in the error message to your entity/property:

// `objectbox:"uid:1306759095002958910"`1
type OldEntityName struct {2
 Id uint643
}4

5
type Task struct {6
 Id uint647

 OldPropertyName string `objectbox:"uid:9141374017424160113"`8
}9

 Step 4: The last thing to do is the actual rename on the language level:

// `objectbox:"uid:1306759095002958910"`1
type RenamedEntity struct {2
 Id uint643
}4

5
type Task struct {6
 Id uint647
 RenamedProperty string `objectbox:"uid:9141374017424160113"`8
}9

 You can now use your renamed entity/property as expected and all existing data will still
be there.

 Note: Instead of the above you can also find the UID of the entity/property in the
objectbox-model.json file yourself and add it together with the @Uid annotation before

renaming your entity/property.

Changing Property Types

ObjectBox does not support migrating existing property data to a new type. You
will have to take care of this yourself, e.g. by keeping the old property and
adding some migration logic.

New property, different name

This solution useful if you need data migration or just want to keep the old data
around.

type Task struct {1
 Id uint642
 OldProperty string 3
}4

5
// becomes6

7
type Task struct {8
 Id uint649
 OldProperty string 10
 NewProperty int11
}12

13
// Note, if the property already had an UID annotation, 14
// don't add the same UID to the new property - skip the annotation inste15

Reset data - new UID on a property

This solution useful if you don't care about the original data at all = it will be
lost.

 Step 1: Add an empty `objectbox:"uid"` annotation to the property you want to reset:

type Task struct {1
 Id uint642
 Property string `objectbox:"uid"`3
}4

 Step 2: Re-generate ObjectBox code for the project using go generate ./... in your

project directory. The generation will fail with an error message that gives you the current

UID of the property:

can't merge binding model information: uid annotation value must not be em1
 [rename] apply the current UID 91413740174241601132
 [change/reset] apply a new UID 60501286738029958273

 Step 3: Apply the UID printed in the error message to your property (and change its type):

type Task struct {1
 Id uint642
 Property int `objectbox:"uid:6050128673802995827"`3
}4

You can now use the property in your entity as if it was a new one.

The original property data isn't really removed right away on old stored objects
but will be empty when read from DB and overwritten (thus finally lost) next time
an object is written.

Custom types

The following built-in types, their aliases and named types based on them are recognized
as ObjectBox and stored as an appropriate internal type:

int, int8, int16, int32, int641
uint, uint8, uint16, uint32, uint642
bool3
string, []string4
byte, []byte5
rune6
float32, float647

Defining a converter

To add support for a custom type, you can map properties to one of the built-in types using
a converter annotation.

For example, you could define a color in your entity using a custom Color struct and map

it to an int32 . Or you can map the time.Time to an int64 , though losing some

precision - less than a millisecond, i. e. a thousandth of a second):

type Task struct {1
 Id uint642
 Text string3
 DateCreated time.Time `objectbox:"date type:int64 converter:timeInt64"`4
}5

In the entity definition above, we instruct ObjectBox to store the DateCreated field as a

int64 while converting it to/from time.Time when using in the program. ObjectBox will

generate a binding code that will call the following two functions (both start with the prefix
timeInt64 specified above):

// from DB value to runtime value1
func timeInt64ToEntityProperty(dbValue int64) (time.Time, error)2

3
// from runtime value to DB value4
func timeInt64ToDatabaseValue(goValue time.Time) (int64, error)5

Just to complete the example, those functions could be implemented like this:

// converts Unix timestamp in milliseconds (ObjectBox date field format) t1
func timeInt64ToEntityProperty(dbValue int64) (goValue time.Time, err erro2
 err = goValue.UnmarshalText([]byte(dbValue))3
 if err != nil {4
 err = fmt.Errorf("error unmarshalling time %v: %v", dbValue, err)5
 }6
 return goValue, err7
}8

9
// converts time.Time to Unix timestamp in milliseconds 10
// i. e. internal format expected by ObjectBox on a date field11
func timeInt64ToDatabaseValue(goValue time.Time) (int64, error) {12
 var ms = int64(goValue.Nanosecond()) / 100000013
 return goValue.Unix()*1000 + ms, nil14
}15

Actually this converter for time.Time is already part of the objectbox

package and used automatically when you mark a time.Time property with

`objectbox:"date"`.

Queries on custom types

When you use a converter, the actual value stored in the database is the result of the
...ToDatabaseValue() call, e.g. int64 in the previous example. Therefore, when you

want to compare the stored data in a query condition, make sure you use the converted
value as well:

// Create1
id, _ := box.Put(&model.Task{2
 Text: "Buy milk",3
 DateCreated: time.Now().UTC()4
})5

6
// Query7
minTime, _ := time.Parse(time.RFC3339, "2018-11-28T12:16:42.145+07:00")8
minTimeInt64, _ := objectbox.TimeInt64ConvertToDatabaseValue(minTime)9
tasks, _ := box.Query(10
 model.Task_.DateCreated.GreaterThan(minTimeInt64)11
).Find()12

Things to look out for

You must not interact with the database (such as using Box or ObjectBox) inside the

converter. The converter methods are called within a transaction, so for example getting or
putting entities to a box will fail.

Your converter implementation must be thread safe as it can be called from multiple go
routines in parallel. Try to avoid using global variables.

Query is unaware of custom types. You have to use the primitive DB type for queries.

Relations

To-One Relations

Objects may reference other objects, for example using a simple reference or a list of
objects. In database terms, we call those references relations. The object defining the
relation we call the source object, the referenced object we call target object. So the relation
has a direction.

If there is one target object, we call the relation to-one. And if there can be multiple target
objects, we call it to-many.

Relations are initialized eagerly by default - i.e. the targets are loaded & as soon
as the source object is read from the database. Lazy/manual loading of to-
many relations is possible, using an annotation.

To-One Relations

You define a to-one relation using `link` annotation on a field that is a pointer or value type
of another entity. Consider the following example - the Order entity has a to-one relation to
the Customer entity.

model.go

type Order struct {1
 Id uint642
 Customer *Customer `objectbox:"link"`3
 Notes string4
}5

6
type Customer struct {7
 Id uint648
 Name string9
}10

Now let's add a customer with a few orders.

main.go

// note that here we're creating a new customer1
// but we could have also reused an existing one2
var customer = &model.Customer{Name: "ACME Inc."}3

4
var box = model.BoxForOrder(ob)5

6
// Insert a new order. ObjectBox also inserts the customer automatically 7
// because it's new (customer.Id == 0 at this point)8
box.Put(&model.Order{9
 Notes: "first order, new customer",10
 Customer: customer,11
})12

13
...14

15
// Add another order. Now the customer.Id is already > 0 16
// so it's not inserted again, just referenced17
box.Put(&model.Order{18
 Text: "second order, existing customer",19
 Customer: customer,20
})21

After the box.Put has been executed on the first order, the customer.Id would be 1

because we're using pointers (Customer *Customer field) so Put could update the variable

when it has inserted the Customer. Note that this wouldn't be possible if we were using
copies (Customer Customer field) and in that case you should insert the customer

manually into it's box first (or use an existing customer selected from the database).

We can also read, update or remove the relationship to a customer:

main.go

var box = model.BoxForOrder(ob)1
2

order, _ := box.Get(1) // Read3
// at this point, order.Customer is already loaded automatically (eager-lo4

5
order.Customer = nil // Remove the relation6
box.Put(order) // Update7

8
// or do an update to a different customer9
customers, _ := model.BoxForCustomer(ob).GetAll()10
order.Customer = customers[2]11
box.Put(order)12

Note that removing the relation does not remove the customer from the database, it
removes only the link between this specific order and the customer.

To-Many Relations

There is a slight difference if you require a one-to-many (1:N) or many-to-many (N:M)
relation.
A 1:N relation is like the example above where a customer can have multiple orders, but an
order is only associated with a single customer. An example for an N:M relation are
students and teachers: students can have classes by several teachers but a teacher can
also instruct several students.

One-to-Many (1:N)

One-to-Many (1:N)

Many-to-Many (N:M)

Currently, one-to-many relations are defined implicitly as an opposite relation to a to-one
relation as defined above. This is useful for queries, e.g. to select all customers with an
order placed within the last seven days.

Many-to-Many (N:M)

To define a to-many relation, you can use a slice of entities - no need to specify the link

annotation this time because ObjectBox wouldn't know how to store a slice of structs by
itself anyway so it assumes it must be a many-to-may relation. They're stored when you put
the source entity and loaded when you read it from the database, unless you specify a
lazy annotation in which case, they're loaded manually, using Box::GetRelated() .

Assuming a students and teachers example, this is how a simple student class that has a
to-many relation to teachers can look like:

model.go

type Teacher struct {1
 Id uint642

 Name string3
}4

5
type Student struct {6
 Id uint647
 Name string8
 Teachers []*Teacher9
}10

Adding the teachers of a student works exactly like with a list:

main.go

var teacher1 = &model.Teacher{Name: "John Wise"}1
var teacher2 = &model.Teacher{Name: "Peter Clever"}2

3
var student1 = &model.Student{4
 Name: "Martin Curious",5
 // we can create the slice in place6
 Teachers: []*model.Teacher{teacher1, teacher2},7
}8

9
// or append to it10
var student2 = &model.Student{Name: "Earl Eager"}11
student2.Teachers = append(student2.Teachers, teacher2)12

13
// puts students and teachers14
var box = model.BoxForStudent(ob)15
box.Put(student1)16
box.Put(student2)17

Similar to the to-one relations, related entities are inserted automatically if they are new. If
the teacher entities do not yet exist in the database, the to-many will also put them. If they
already exist, the to-many will only create the relation (but not put them).

To get the teachers of a student we just access the list:

main.go

var student1 = model.BoxForStudent(ob).Get(1);

1

for _, teacher := range student1.Teachers {2
 fmt.PrintLn(teacher.Name)3
}4

Remove and update work similar to insert - you just change the student.Teachers slice

to reflect the new state (i.e. remove element, add elements, etc) and box.Put(student) .

Note that if you want to change actual teacher data (e.g. change teachers name), you need
to update the teacher entity itself, not just change it in one of the student.Teachers slice.

Lazy loading

In case the slices might contain many objects and you don't need to access the slice of the
related objects each time you work with the source object, you may consider enabling the
so called lazy-loading. You do that by specifying the `lazy` annotation on the field. Consider
the updated model of the previous example:

model.go

type Teacher struct {1
 Id uint642
 Name string3
}4

5
type Student struct {6
 Id uint647
 Name string8
 Teachers []*Teacher `objectbox:"lazy"`9
}10

This way, when you read a Student object, the Teachers field would be nil and you

can work with the student as you wish, changing it and saving and the list of assigned
teachers wouldn't change as long as the Teachers field stays nil . If it wasn't nil , but

a slice of Teachers instead, ObjectBox would recognize this as an update of the field and
replace the relational links.

Reading a lazy-loaded slice

To access the list of Teachers , we need to first load them. ObjectBox has generated a

helper method just for that

main.go

var box = model.BoxForStudent(ob)1
2

var student1 = box.Get(1);3
4

// at this point `student1.Teachers == nil`, so if we need it, we must loa5
box.GetRelated(student1) // loads all lazy-loaded relations6

7
// or alternatively load just the Teachers property 8
// (useful if there were other lazy-loaded relations we didn't care about 9
box.GetRelated(student1, Student_.Teachers)

10

// now the teachers are loaded and we can access them as usual11
for _, teacher := range student1.Teachers {12
 fmt.PrintLn(teacher.Name)13
}14

Updating a lazy-loaded slice

To update the list of Teachers , we can either overwrite the slice with completely new data

(new slice), or if we want to keep the original data and update it, e.g. change a few items,
we need to load them first the same way as when reading (above).

main.go

var box = model.BoxForStudent(ob)1
2

var student1 = box.Get(1);3
4

// propagate student1.Teachers based on the current data in DB5
box.GetRelated(student1, Student_.Teachers)

6

// add a new teacher to the existing7
student1.Teachers = append(student1.Teachers, &model.Teacher{Name: "Peter 8

9
// save the updated list, including a new teacher10
box.Put(student1)11

FAQ

How is ObjectBox different from BoltDB (bolt/bbolt) or
Badger?

BoltDB and Badger are key/value stores. These are database primitives using bytes for
keys and values. Many databases, including ObjectBox, build on top of a K/V layer to
provide a higher level interface than "just bytes". One approach to do that is a separate
ORM layer (like GORM, Storm, etc.). ObjectBox Go takes a slightly different approach,
integrating both together to provide a concise and type-safe interface with great
performance all in one package.

Therefore, we call ObjectBox an object database. You interact with it using objects; the
same structs you use in your Go code. Just like that, no tearing apart for SQL whatsoever
required.

Also, ObjectBox knows the "inside" of objects; and allows to query for struct fields
("properties"). It also manages indexing for you, you just have to specify which properties
should be indexed.

Couldn't I just use JSON to store data? (or anything file-
based)

Note: The same also applies other simple file based approaches using CSV, XML, or object
collections stored using binary serializations like Protocol Buffers, BSON, MessagePack, ...

It's perfectly fine to store data as JSON if you have a limited number of objects to manage.
The more scalable approach to manage data, however, is to use a database like ObjectBox:

ObjectBox uses a binary encoding which is faster
Individual object changes: Let's say you have a list of objects and you change a single
value. Using JSON, you typically write the entire list. ObjectBox touches a single object
only.

Random access: In ObjectBox you can get single objects efficiently without need to
parse the entire JSON file.
Memory efficiency: In close collaboration with the OS, ObjectBox can "page" through
large data sets which would not fit into memory
Queries & Indexing: ObjectBox comes with automatic indexing; which will drastically
improve queries.
ObjectBox offers ACID transactions to keep your data safe and consistent.

Is ObjectBox ACID compliant? Is it an in-memory database?

ObjectBox comes with ACID transactions. It has hard durability (the "D" in ACID) semantics.
For synchronous transactions (e.g. what happens under the hood for Box.Put()), data is
stored durable once it returns. Unlike ObjectBox, many NoSQL DBs have relaxed durability
semantics (e.g. a time window of second where data can be lost).

ObjectBox is not an in-memory database. The latter have high RAM requirements because
they have to keep ALL data in memory. ObjectBox usage of RAM is flexible; it doesn't need
much but makes use of RAM if it is available. That is why ObjectBox is usually as fast as
an in-memory database.

I'm getting "exit status 3221225781" on Windows

Exit status 3221225781 is a secret code :) for a missing DLL on windows. So even if your
code has been compiled successfully, Windows can't find the DLL when launching the
application (or tests). The DLL needs to be copied somewhere Windows will recognize it.
See Installation on Windows for instructions.

I'm getting errors during installation

You may encounter various seemingly unrelated errors when trying to install ObjectBox on a
system without a C/C++ compiler (or when trying to cross-compile). These may be, for

example:

... objectbox-go/objectbox/condition.go:21:14: undefined: QueryBuilder

cannot find module for path github.com/objectbox/objectbox-
go/internal/generator

pkg/mod/github.com/objectbox/objectbox-go@v1.0.0/objectbox/model.go:30:2:
cannot find package

These errors are caused by Go failing to compile the package correctly. Because ObjectBox
is using a native library, it requires CGO, which in turn needs a C/C++ compiler. Please make
sure you have a working C/C++ compiler installed. See the installation instructions for
further details.

Trying to cross-compile ObjectBox may also be giving you similar errors. The
reason is the same - not having the right C/C++ cross-compiler set up.

Currently, cross-compilation is not tested/supported so please use native
platform compilation for now and upvote this GitHub issue if cross-compilation
is important for you.

https://github.com/objectbox/objectbox-go/issues/18

