
ObjectBox Java

Java API

This is the ObjectBox documentation for our Java API. We strive to provide you with the

easiest and fastest solution to store and retrieve data. Your feedback on ObjectBox and

this documentation is very welcome. Use the "Was this page helpful?" smiley at the end of

each page or send us your comments to contact[at]objectbox.io - thank you! :)

Getting started /getting-started

ObjectBox Changelog

V2.6.0-RC - 2020/04/28

Note: this is a release candidate. Only some minor details may change before 2.6.0.

@DefaultValue("") annotation for properties: If used, a null value returned from

the database is changed to the given default value (only empty string at this time). This

is useful if a new property is added to an entity that should be not-null, but there are

existing entities in the database that will return null for the new property. Note: naming

is not final, e.g. it may change to e.g. @AbsentValue("") . GH#157

RxJava 3 support library: available under the new artifact objectbox-rxjava3 . It

includes Kotlin extension functions to more easily obtain Rx types, e.g. use

query.observable() to get an Observable . GH#83

Fix error handling if ObjectBox can't create a Java entity (the proper exception is now

thrown).

Support setting an alias after combining conditions using and() or or() . GH#83

Turn on incremental annotation processing by default. GH#620

Add documentation that string property conditions ignore case by default. Point to

using case-sensitive conditions for high-performance look-ups, e.g. when using string

UIDs.

Repository Artifacts are signed once again.

https://github.com/objectbox/objectbox-java/issues/157
https://github.com/objectbox/objectbox-java/tree/master/objectbox-rxjava3
https://github.com/objectbox/objectbox-java/issues/839
https://github.com/objectbox/objectbox-java/issues/834
https://github.com/objectbox/objectbox-java/issues/620
https://docs.objectbox.io/entity-annotations#object-ids-id

V3.0.0-alpha2 - 2020/03/24

Note: this is a preview release. Future releases may add, change or remove APIs.

Add Kotlin infix extension functions for creating conditions using the new Query API.

See the documentation for examples.

The old Query API now also supports setting an alias after combining conditions using

and() or or() . GH#834

Add documentation that string property conditions ignore case by default. Point to

using case-sensitive conditions for high-performance look-ups, e.g. when using string

UIDs.

Java's String[] and Kotlin's Array<String> are now a supported database type. A

converter is no longer necessary to store these types. Using the

arrayProperty.equal("item") condition, it is possible to query for entities where

"item" is equal to one of the array items.

Support @Unsigned to indicate that values of an integer property (e.g. Integer and

Long in Java) should be treated as unsigned when doing queries or creating indexes.

See the Javadoc of the annotation for more details.

Add new library to support RxJava 3, objectbox-rxjava3 . In addition

objectbox-kotlin adds extension functions to more easily obtain Rx types, e.g. use

query.observable() to get an Observable . GH#839

To use this release change the version of objectbox-gradle-plugin to 3.0.0-alpha2 .

The plugin now properly adds the preview version of objectbox-java to your

dependencies.

buildscript {1
 dependencies {2
 classpath "io.objectbox:objectbox-gradle-plugin:3.0.0-alpha2"3
 }4
}5

6
dependencies {7
 // Artifacts with native code remain at 2.5.1.8
 implementation "io.objectbox:objectbox-android:2.5.1"9
}10

https://github.com/objectbox/objectbox-java/issues/834
https://docs.objectbox.io/entity-annotations#object-ids-id
https://github.com/objectbox/objectbox-java/tree/release-3.0.0-alpha2/objectbox-rxjava3
https://github.com/objectbox/objectbox-java/issues/839

The objectbox-android , objectbox-linux , objectbox-macos and

objectbox-windows artifacts shipping native code remain at version 2.5.1 as there have

been no changes. If you explicitly include them, make sure to specify their version as

2.5.1 .

V3.0.0-alpha1 - 2020/03/09

Note: this is a preview release. Future releases may add, change or remove APIs.

A new Query API provides support for nested AND and OR conditions. See the

documentation for examples and notable changes. GH#201

Subscriptions now publish results in serial instead of in parallel (using a single thread

vs. multiple threads per publisher). Publishing in parallel could previously lead to

outdated results getting delivered after the latest results. As a side-effect transformers

now run in serial instead of in parallel as well (on the same single thread per

publisher). GH#793

Turn on incremental annotation processing by default. GH#620

To use this release change the version of objectbox-gradle-plugin to 3.0.0-alpha1

and add a dependency on objectbox-java version 3.0.0-alpha1 .

buildscript {1
 dependencies {2
 classpath "io.objectbox:objectbox-gradle-plugin:3.0.0-alpha1"3
 }4
}5

6
dependencies {7
 implementation "io.objectbox:objectbox-java:3.0.0-alpha1"8
 // Artifacts with native code remain at 2.5.1.9
 implementation "io.objectbox:objectbox-android:2.5.1"10
}11

The objectbox-android , objectbox-linux , objectbox-macos and

objectbox-windows artifacts shipping native code remain at version 2.5.1 as there have

been no changes. However, if your project explicitly depends on them they will pull in

https://github.com/objectbox/objectbox-java/issues/201
https://github.com/objectbox/objectbox-java/issues/793
https://github.com/objectbox/objectbox-java/issues/620

version 2.5.1 of objectbox-java . Make sure to add an explicit dependency on of

objectbox-java version 3.0.0-alpha1 as mentioned above.

V2.5.1 - 2020/02/10

Support Android Gradle Plugin 3.6.0. GH#817

Support for incremental annotation processing. GH#620 It is off by default. To turn it on

set objectbox.incremental to true in build.gradle :

android {1
 defaultConfig {2
 javaCompileOptions {3
 annotationProcessorOptions {4
 arguments = ["objectbox.incremental" : "true"]5
 }6
 }7
 }8
}9

V2.5.0 - 2019/12/12

Important bug fix - please update asap if you are using N:M relations!

Fixed corner case for N:M ToMany (not the backlinks for ToOne) returning wrong

results

Improvements and New Features

Property queries compute sums and averages more precisely (improved algorithms

and wider internal types)

Query adds "describe" methods to obtain useful debugging information

New method removeAllObjects() in BoxStore to clear the database of all data

V2.4.1 - 2019/10/29

More helpful error messages if annotations can not be combined.

Improved documentation on various annotations.

https://github.com/objectbox/objectbox-java/issues/817
https://github.com/objectbox/objectbox-java/issues/620

V2.4.0 - 2019/10/15

Upgrade Notes

Android: the AAR libraries ship Java 8 bytecode. Your app will not build unless you

upgrade com.android.tools.build:gradle to 3.2.1 or later.

Android: the ObjectBox LiveData and Paging integration migrated from Android

Support Libraries to Jetpack (AndroidX) Libraries. If you are using them the library will

not work unless you make the following changes in your app:

Upgrade com.android.tools.build:gradle to 3.2.1 or later.

Upgrade compileSdkVersion to 28 or later.

Update your app to use Jetpack (AndroidX); follow the instructions in Migrating to

AndroidX.

Note: this version requires backwards-incompatible changes to the generated

MyObjectBox file. Make sure to rebuild your project before running your app so the

MyObjectBox file is re-generated.

Improvements & Fixes

V2.4.0 - 2019/10/15

Class transformation works correctly if absolute path contains special characters.

GH#135

V2.4.0-RC - Release Candidate 2019/10/03

Box: add getRelationEntities , getRelationBacklinkEntities , getRelationIds

and getRelationBacklinkIds to directly access relations without going through

ToMany.

Box: add putBatched to put entities using a separate transaction for each batch.

Box.removeByKeys() is now deprecated; use removeByIds() instead.

Query: fixed performance regressions introduced in version 2.3 on 32 bit devices in

combination with ordered results

Fixed removing a relation and the related entity class. GH#490

Resolved issue to enable query conditions on the target ID property of a ToOne

relation. GH#537

Box.getAll always returns a mutable list. GH#685

https://developer.android.com/jetpack/androidx/migrate
https://github.com/objectbox/objectbox-java/issues/135
https://github.com/objectbox/objectbox-java/issues/490
https://github.com/objectbox/objectbox-java/issues/537
https://github.com/objectbox/objectbox-java/pull/685

Do not overwrite existing objectbox-java or objectbox-kotlin dependency. GH#693

Resolved a corner case build time crash when parsing package elements. GH#698

When trying to find an appropriate get-method for a property, also check if the return

type matches the property type. GH#720

Explicitly display an error if two entities with the same name are detected. GH#744

The code in MyObjectBox is split up by entity to make it less likely to run into the Java

method size limit when using many @Entity classes. GH#750

Query: improved performance for ordered results with a limit. GH#769

Query: throw if a filter is used incorrectly with count or remove. GH#771

Documentation and internal improvements.

V2.3.4 - 2019/03/19

Avoid UnsatisfiedLinkError on Android devices that are not identifying as Android

correctly

Fix displaying large objects in Object Browser 32 bit

Kotlin properties starting with "is" of any type are detected

Add objectbox-kotlin to dependencies if kotlin-android plugin is applied

(previously only for kotlin plugin)

@BaseEntity classes can be generic

V2.3.3 - 2019/02/14

Fixed a bug introduced by V2.3.2 affecting older Android versions 4.3 and below

V2.3.2 - 2019/02/04

Potential work around for UnsatisfiedLinkError probably caused by installation errors

mostly in alternative app markets

Support for Android Gradle Plugin 3.3.0: resolves deprecated API usage warnings.

V2.3.1 - 2019/01/08

Fixed a corner case for Box.getAll() after removeAll() to return a stale object if no

objects are stored

https://github.com/objectbox/objectbox-java/issues/693
https://github.com/objectbox/objectbox-java/issues/698
https://github.com/objectbox/objectbox-java/issues/720
https://github.com/objectbox/objectbox-java/issues/744
https://github.com/objectbox/objectbox-java/issues/750
https://github.com/objectbox/objectbox-java/issues/769
https://github.com/objectbox/objectbox-java/issues/771

V2.3 - 2018/12/30

Improvements & Fixes

Query improvements: findIds and LazyList also consider the order; offset and limit for

findIds

Improved 32 bit support: Windows 32 version officially deployed, fixed a corner case

crash

Property queries for a boolean property now allow sum()

Added Box.isEmpty()

Supporting older Linux distributions (now starting at e.g. Ubuntu 16.04 instead of

18.04)

Fix for a corner case with Box.count() when using a maximum

Minor improvements to the ObjectBox code generator

Android: set extractNativeLibs to false to avoid issues with extracting the native library

V2.2 - 2018/09/27

Improvements & Fixes

Fix: the unique check for string properties had false positives resulting in

UniqueViolationException. This occurs only in combination with IndexType.HASH (the

default) when hashes actually collide. We advise to update immediately to the newest

version if you are using hashed indexes.

The release of new ObjectBox C API made us change name of the JNI library

for better distinction. This should not affect you unless you depended on that (internal)

name.

Improved compatibility with class transformers like Jacoco

Fixed query links for M:N backlinks

Improved error messages for the build tools

The Object Browser AAR now includes the required Android permissions

V2.1 - 2018/08/16

Minor Improvements & Fixes

Entity counts are now cached for better performance

https://github.com/objectbox/objectbox-c

Deprecated aggregate function were removed (deprecation in 1.4 with introduction of

PropertyQuery)

Object browser hot fix: the hashed indexes introduced in 2.0 broke the object browser

Object browser fixes: filters with long ints, improved performance in the schema view

NPE fix in ToOne

Added a specific NonUniqueResultException if a query did not return an expected

unique result

V2.0 - 2018/07/25

New Features/Improvements

Links and relation completeness and other features already announced in the 2.0 beta

Unique constraint for properties via @Unique annotation

Hash index: for strings the new default index is hash-based, which is more space

efficient

Support for char type (16 bit)

RX lib deployed in JCenter

Rework of Query APIs: type safe properties (property now knows its owning entity)

Allow query conditions of links using properties (without parameter alias)

Query performance improvements when using order

Property based count: query for non-null or unique occurrences of entity properties

(non-null and unique)

Additional query conditions for strings: "greater than", "less than", "in"

Added query conditions for byte arrays

Set query parameters for "in" condition (int[] and long[])

V2.0 beta – 2018/06/26

New Features/Improvements

Query across relation bounds using links (aka "join"): queries just got much more

powerful. For example, query for orders that have a customer with an address on

"Sesame Street". Or all persons, who have a grand parent called "Alice".

Backlinks for to-many relations: now ObjectBox is "relation complete" with a bi-

directional many-to-many relation.

Query performance improvements: getting min/max values of indexed properties in

constant time

Android: added Paging library support (architecture components)

Kotlin extensions: more Kotlin fun with ObjectBox KTX

Query parameters aliases: helps setting query parameters in complex scenarios (e.g.

for properties of linked entities)

Improved query parameter verification

Many internal improvements to keep us going fast in the future

V1.5 and earlier

Check the release history for older releases

Getting started

 Note: We focus on Android on this page. You can use ObjectBox in a plain

Java project as well.

https://www.youtube.com/watch?v=flmAeYY-u9I

Adding ObjectBox to your Android Project

ObjectBox is available from the jcenter repository. To add ObjectBox to your Android

project, open the root build.gradle file of your project (not the ones for your app or

module) and add a global variable for the version and the ObjectBox Gradle plugin:

buildscript {1
 ext.objectboxVersion = '2.5.1'2
 repositories {3
 jcenter()4
 }5
 dependencies {6
 // Android Gradle Plugin 3.2.1 or later supported.7
 classpath 'com.android.tools.build:gradle:3.5.4'8
 classpath "io.objectbox:objectbox-gradle-plugin:$objectboxVersion"9
 }10
}11

Open the build.gradle file for your app or module and, after the com.android.application

plugin, apply the io.objectbox plugin:

https://www.youtube.com/watch?v=flmAeYY-u9I

Java

Kotlin

apply plugin: 'com.android.application'1
apply plugin: 'io.objectbox' // Apply last.2

apply plugin: 'com.android.application'1
apply plugin: 'kotlin-android'2
apply plugin: 'kotlin-kapt' // Required for annotation processing.3
apply plugin: 'io.objectbox' // Apply last.4

If you encounter any problems in this or later steps, check out the FAQ and

Troubleshooting pages.

Then do "Sync Project with Gradle Files" so the Gradle plugin automatically adds the

required ObjectBox libraries and code generation tasks.

Optional: Advanced Setup

The ObjectBox plugin uses reasonable defaults and detects most configurations

automatically. However, if needed you can configure the model file path, the MyObjectBox

package, enable debug mode and more using advanced setup options.

Entity Classes

Java

Kotlin

Next, define your model by annotating at least one class with @Entity and @Id . A

simple entity representing a user could look like this:

// User.java1
@Entity2
public class User {3
 @Id public long id;4
 public String name;5
}6

// User.kt1
@Entity2
data class User(3
 @Id var id: Long = 0,4
 var name: String? = null5
)6

When using a data class, add default values for all properties. This

will ensure your data class will have a constructor that can be called by

ObjectBox. (Technically this is only required if using custom or transient

properties or relations, but it's a good idea to do it always.)

Entities must have one @Id property of type long (or Long in Kotlin). If you need to

use other types, like a String ID, see the @Id annotation docs. Also, it must have not-
private visibility (or a not-private getter and setter method).

For a deeper explanation and a look at all other available annotations (e.g. for relations

and indexes) check the Entity Annotations page.

Now build your project to generate required classes, for example using Build > Make
Project in Android Studio.

Note: If you make significant changes to your entities, e.g. by moving them or

modifying annotations, make sure to rebuild the project so generated

ObjectBox code is updated.

Model file

Among other files ObjectBox generates a JSON model file, by default to

app/objectbox-models/default.json . This JSON file will change every time you change

your entities or we make some internal changes to ObjectBox.

Keep this JSON file, commit the changes to version control!

In Android Studio you might have to switch the Project view from Android to

Project to see the default.json model file.

This file keeps track of unique IDs assigned to your entities and properties. This ensures

that an older version of your database can be smoothly upgraded if your entities or

properties change. It also enables to keep data when renaming entities or properties or to

resolve conflicts when two of your developers make changes at the same time.

Core Classes

https://docs.objectbox.io/advanced/meta-model-ids-and-uids

Java

The following core classes are the essential interface to ObjectBox:

MyObjectBox: Generated based on your entity classes, MyObjectBox supplies a builder

to set up a BoxStore for your app.

BoxStore: The entry point for using ObjectBox. BoxStore is your direct interface to the

database and manages Boxes.

Box: A box persists and queries for entities. For each entity, there is a Box (supplied by

BoxStore).

Core Initialization

The BoxStore for your app is initialized using the builder returned by the generated

MyObjectBox class, for example in a small helper class like this:

public class ObjectBox {1
 private static BoxStore boxStore;2

3
 public static void init(Context context) {4
 boxStore = MyObjectBox.builder()5
 .androidContext(context.getApplicationContext())6
 .build();7
 }8

9
 public static BoxStore get() { return boxStore; }10
}11

https://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStoreBuilder.html
https://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStore.html
https://objectbox.io/files/objectbox-java/current/io/objectbox/Box.html

Kotlin

Java

object ObjectBox {1
 lateinit var boxStore: BoxStore2
 private set3

4
 fun init(context: Context) {5
 boxStore = MyObjectBox.builder()6
 .androidContext(context.applicationContext)7
 .build()8
 }9
}10

You might receive crash reports due to UnsatisfiedLinkError or

LinkageError on the build call. See App Bundle, split APKs and Multidex for

solutions.

The best time to initialize ObjectBox is when your app starts. We suggest to do it in the

onCreate method of your Application class:

public class ExampleApp extends Application {1
 @Override2
 public void onCreate() {3
 super.onCreate();4
 ObjectBox.init(this);5
 }6
}7

https://developer.android.com/reference/android/app/Application

Kotlin

Java

Kotlin

class ExampleApp : Application() {1
 override fun onCreate() {2
 super.onCreate()3
 ObjectBox.init(this)4
 }5
}6

Now you can easily get a hold of BoxStore throughout your app (usually in fragments,

activities) and access the specific Box that you need:

Box<User> userBox = ObjectBox.get().boxFor(User.class);

val userBox: Box<User> = ObjectBox.boxStore.boxFor()

Here, User is an ObjectBox entity. And now that we have its Box, we can start storing

and retrieving it from the database.

Basic Box operations

The Box class is likely the class you interact with most. As seen previously, you get Box

instances via BoxStore.boxFor() . A Box instance gives you access to objects of a

https://objectbox.io/files/objectbox-java/current/io/objectbox/Box.html

Java

Kotlin

particular type. For example, if you have User and Order entities, you need two Box

objects to interact with each:

Box<User> userBox = boxStore.boxFor(User.class);1
Box<Order> orderBox = boxStore.boxFor(Order.class);2

val userBox: Box<User> = ObjectBox.boxStore.boxFor()1
val orderBox: Box<Order> = ObjectBox.boxStore.boxFor()2

These are some of the operations offered by the Box class:

put: Inserts a new or updates an existing object with the same ID. When inserting and

put returns, an ID will be assigned to the just inserted object (this will be explained

below). put also supports putting multiple objects, which is more efficient.

get and getAll: Given an object’s ID reads it back from its box. To get all objects in the

box use getAll .

remove and removeAll: Remove a previously put object from its box (deletes it).

remove also supports removing multiple objects, which is more efficient. removeAll

removes (deletes) all objects in a box.

count: Returns the number of objects stored in this box.

query: Starts building a query to return objects from the box that match certain

conditions. See queries for details.

 For a complete list of methods available in the Box class, check its JavaDoc.

https://objectbox.io/files/objectbox-java/current/io/objectbox/Box.html

Java

Kotlin

Object IDs

By default IDs for new objects are assigned by ObjectBox. When a new object is put, it

will be assigned the next highest available ID:

User user = new User();1
// user.id == 02
box.put(user);3
// user.id != 04
long id = user.id;5

val user = User()1
// user.id == 02
box.put(user)3
// user.id != 04
val id = user.id5

For example, if there is an object with ID 1 and another with ID 100 in a box, the next new

object that is put will be assigned ID 101.

If you try to assign a new ID yourself and put the object, ObjectBox will throw an error.

If you need to assign IDs by yourself have a look at how to switch to self-

assigned IDs and what side-effects apply.

Reserved Object IDs

Object IDs can not be:

0 (zero) or null (if using java.lang.Long) As said above, when putting an object

with ID zero it will be assigned an unused ID (not zero).

0xFFFFFFFFFFFFFFFF (-1 in Java) Reserved for internal use.

For an advanced explanation see the page on Object IDs.

Transactions

While ObjectBox offers powerful transactions, it is sufficient for many apps to consider just

some basics guidelines about transactions:

A put runs an implicit transaction.

Prefer put bulk overloads for lists (like put(entities)) when possible.

For a high number of DB interactions in loops, consider explicit transactions, such as

using runInTx() .

For more details check the separate transaction documentation.

Have an app with greenDAO? DaoCompat is for you!

DaoCompat is a compatibility layer that gives you a greenDAO like API for ObjectBox. It

makes switching from greenDAO to ObjectBox simple. Have a look at the documentation

and the example. Contact us if you have any questions!

Next steps

Check out the ObjectBox example projects on GitHub.

Learn about Queries and Relations.

http://greenrobot.org/greendao/documentation/objectbox-compat/
https://github.com/objectbox/objectbox-examples/tree/master/android-app-daocompat
https://github.com/objectbox/objectbox-java/issues
https://github.com/objectbox/objectbox-examples/

Tutorial: Demo Project

What is ObjectBox? It’s a mobile database that makes object persistence simple and super

fast.

This tutorial will walk you through a simple note-taking app explaining how to do basic

operations with ObjectBox. To just integrate ObjectBox into your project, look for the

Getting Started page.

It’s a good idea to clone the example project repository from GitHub right now:

git clone https://github.com/objectbox/objectbox-examples.git

This allows you to run the code and explore it in its entirety. The example project discussed

here is in the android-app folder (or android-app-kotlin for the Kotlin version). It is a

simple Android app for taking notes where you can add new notes by typing in some text

and delete notes by clicking on an existing note.

The Note entity and Box class

To begin let’s jump right into the code: in the src folder you will find the entity class for a

note, Note . It is persisted to the database and contains all data that is part of a note, like

an id, note text and the creation date.

https://github.com/objectbox/objectbox-examples

Java

Kotlin

Note.java

@Entity1
public class Note {2
 3
 @Id4
 long id;5
 6
 String text;7
 String comment;8
 Date date;9
 10
 ...11
}12

Note.kt

@Entity1
data class Note(2
 @Id var id: Long = 0,3
 var text: String? = null,4
 var comment: String? = null,5
 var date: Date? = null6
)7

In general, an ObjectBox entity is an annotated class persisted in the database with its

properties. In order to extend our note or to create new entities, you simply modify or

create new plain Java classes and annotate them with @Entity and @Id .

Entity Annotations /entity-annotations

Java

Kotlin

Go ahead and build the project, for example by using Build > Make project in Android

Studio. This triggers ObjectBox to generate some classes, like MyObjectBox.java , and

some other classes used by ObjectBox internally.

Inserting notes

To see how new notes are added to the database, take a look at the NoteActivity class.

First of all a Box object for the Note class is prepared, which is done in onCreate() :

NoteActivity.java

@Override1
public void onCreate(Bundle savedInstanceState) {2
 ...3
 notesBox = ObjectBox.get().boxFor(Note.class);4
 ...5
}6

NoteActivity.kt

public override fun onCreate(savedInstanceState: Bundle?) {1
 ...2
 notesBox = ObjectBox.boxStore.boxFor()3
 ...4
}5

Note: In the example project, ObjectBox is the name of a helper class to set

up and keep a reference to BoxStore .

Java

Kotlin

When the user clicks the ADD button the method addNote() is called. There, a new

Note object is created and put into the database using the Box reference:

NoteActivity.java

private void addNote() {1
 ...2
 Note note = new Note();3
 note.setText(noteText);4
 note.setComment(comment);5
 note.setDate(new Date());6
 notesBox.put(note);7
 Log.d(App.TAG, "Inserted new note, ID: " + note.getId());8
 ...9
}10

NoteActivity.kt

private fun addNote() {1
 ...2
 val note = Note(text = noteText, comment = comment, date = Date(3
 notesBox.put(note)4
 Log.d(App.TAG, "Inserted new note, ID: " + note.id)5
 ...6
}7

Note that the ID is left at 0 when creating the note. In this case ObjectBox assigns an ID

during put() .

Removing/deleting notes

Java

Kotlin

When the user taps a note it should be deleted. To remove (or delete) a note from its box

use remove() or one of its overloads. See noteClickListener :

NoteActivity.java

OnItemClickListener noteClickListener = new OnItemClickListener() {1
 @Override2
 public void onItemClick(AdapterView<?> parent, View view, int po3
 Note note = notesAdapter.getItem(position);4
 notesBox.remove(note);5
 Log.d(App.TAG, "Deleted note, ID: " + note.getId());6
 ...7
 }8
};9

NoteActivity.kt

private val noteClickListener = OnItemClickListener { _, _, position1
 notesAdapter.getItem(position)?.also {2
 notesBox.remove(it)3
 Log.d(App.TAG, "Deleted note, ID: " + it.id)4
 }5
 ...6
}7

Querying notes

To query and display notes with a list adapter a Query instance is built once in

onCreate() :

Java

Kotlin

NoteActivity.java

@Override1
public void onCreate(Bundle savedInstanceState) {2
 ...3
 // Query all notes, sorted a-z by their text.4
 notesQuery = notesBox.query().order(Note_.text).build();5
 ...6
}7

NoteActivity.kt

public override fun onCreate(savedInstanceState: Bundle?) {1
 ...2
 // Query all notes, sorted a-z by their text.3
 notesQuery = notesBox.query {4
 order(Note_.text)5
 }6
 ...7
}8

And then executed each time any notes change:

Java

Kotlin

NoteActivity.java

private void updateNotes() {1
 List<Note> notes = notesQuery.find();2
 notesAdapter.setNotes(notes);3
}4

NoteActivity.kt

private fun updateNotes() {1
 val notes = notesQuery.find()2
 notesAdapter.setNotes(notes)3
}4

In addition to an order, you can add various conditions, like equality or less/greater than,

when building a query.

Queries /queries

Updating notes and more

What is not shown in the example, but is just as easy is how to update an existing (== the

ID is not 0) note. Just modify any of its properties and call put() again with the changed

object:

Java

Kotlin

note.setText("This note has changed.");1
notesBox.put(note);2

note.text = "This note has changed."1
notesBox.put(note)2

There are additional methods to put, find, query, count or remove entities. Check out

the methods of the Box class to learn more.

Getting started /getting-started

Setting up the database

Now that you saw ObjectBox in action, how did we get that BoxStore instance? Typically

you should set up a BoxStore once for the whole app. This example uses a helper class as

recommended in the Getting Started guide.

Getting started /getting-started

Remember: ObjectBox is a NoSQL database on its own and thus NOT based on SQL or

SQLite. That’s why you do not need to set up “CREATE TABLE” statements during

initialization.

http://objectbox.io/files/objectbox-java/current/io/objectbox/Box.html
http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStore.html

Note: it is perfectly fine to never close the database. That’s even recommended

for most apps.

Entity Annotations

Java

ObjectBox - Database Persistence with Entity
Annotations

ObjectBox is a database that persists objects. For a clear distinction, we sometimes call

those persistable objects entities.

To let ObjectBox know which classes are entities you annotate them with @Entity , for

example:

@Entity1
public class User {2
 3
 @Id4
 private long id;5
 6
 private String name;7
 8
 // Not persisted:9
 @Transient10
 private int tempUsageCount;11
 12
 // TODO: getters and setters.13
}14

Kotlin

@Entity1
data class User(2
 @Id var id: Long = 0,3
 var name: String? = null,4
 // Not persisted:5
 @Transient var tempUsageCount: Int = 06
)7

The @Entity annotation identifies the class User as a persistable entity. This will trigger

ObjectBox to generate persistence code tailored for this class.

Note:

It’s often good practice to model entities as “dumb” data classes (POJOs)
with just properties.

For Kotlin: When using a data class, add default values for all properties.

This will ensure your data class will have a constructor that can be called

by ObjectBox. (Technically this is only required if using custom or transient

properties or relations, but it's a good idea to do it always.)

Object IDs: @Id

In ObjectBox, entities must have one @Id property of type long (or Long in Kotlin)

with not-private visibility (or not-private getter and setter method) to efficiently get or

reference objects. You can use the nullable type java.lang.Long , but we do not

recommend it.

Java

Kotlin

@Entity1
public class User {2
 3
 @Id public long id;4
 5
 ...6
}7

@Entity1
data class User(2
 @Id var id: Long = 0,3
 ...4
)5

If you need to use another type for IDs (such as a string UID given by a server), model

them as regular properties and use queries to look up objects by your application specific

ID. Also make sure to index the property, and if it's a string use a case-sensitive condition,

to speed up look-ups.

Java

Kotlin

@Entity1
class StringIdEntity {2
 @Id public long id;3
 @Index public String uid;4
}5

6
StringIdEntity entity = box.query()7
 .equal(StringIdEntity_.uid, uid, StringOrder.CASE_SENSITIVE)8
 .build().findUnique()9

@Entity1
data class StringIdEntity(2
 @Id var id: Long = 0,3
 @Index var uid: String? = null4
)5

6
val entity = box.query()7
 .equal(StringIdEntity_.uid, uid, StringOrder.CASE_SENSITIVE)8
 .build().findUnique()9

ID properties are unique and indexed by default.

When you put a new object you do not assign an ID. By default IDs for new objects are
assigned by ObjectBox. See the page on Object IDs for details.

If you need to assign IDs by yourself have a look at how to switch to self-

assigned IDs and what side-effects apply.

Java

Make entity data accessible

ObjectBox needs to access the data of your entity’s properties (e.g. in generated Cursor

classes). You have two options:

1. Give your property fields at least “package private” (not “private”) visibility. In Kotlin,

you can use @JvmField .

2. Provide standard getters (your IDE can generate them easily).

To improve performance when ObjectBox constructs your entities, you might also want to

provide an all-properties constructor (for Kotlin data classes, make sure all properties have

a default value instead). For example:

@Entity1
public class User {2
 3
 @Id private long id;4
 5
 private String name;6
 7
 // Not persisted:8
 @Transient private int tempUsageCount;9
 10
 public User() { /* Default constructor */ }11
 12
 public User(id, name) {13
 this.id = id;14
 this.name = name;15
 }16
 17
 // Getters and setters for properties...18
}19

Kotlin

Java

// Ensure all properties have default values:1
@Entity2
data class User(3
 @Id var id: Long = 0,4
 var name: String? = null,5
 // Not persisted:6
 @Transient var tempUsageCount: Int = 07
)8

Basic annotations for entity properties

...1
@NameInDb("username")2
private String name;3

4
@Transient5
private int tempUsageCount;6
...7

Kotlin

...1
@NameInDb("username")2
var name: String? = null,3

4
@Transient5
var tempUsageCount: Int = 0,6
...7

@NameInDb lets you define a name on the database level for a property. This allows you to

rename the field (or property in Kotlin) without affecting the property name on the database

level.

Note:

To rename properties and even entities you should use @Uid annotations

instead.

@NameInDb only works with inline constants to specify a column name.

@Transient (or alternatively the transient modifier) marks properties that should not

be persisted, like the temporary counter above. static properties will also not be

persisted.

Property Indexes with @Index

Annotate a property with @Index to create a database index for the corresponding

database column. This can improve performance when querying for that property.

Java

Kotlin

...1
@Index2
private String name;3
...4

...1
@Index2
var name: String? = null,3
...4

@Index is currently not supported for byte[] , float and double in Java

or the equivalent ByteArray , Float and Double in Kotlin.

An index stores additional information in the database to make look-ups faster. As an

analogy we could look at Java-like programming languages where you store objects in a

list. For example you could store persons using a List<Person> . Now, you want to

search for all persons with a specific name so you would iterate through the list and check

for the name property of each object. This is an O(N) operation and thus does don't scale

well with an increasing number of objects. To make this more scalable you can introduce a

second data structure Map<String, Person> with the name as a key. This will give you a

constant lookup time (O(1)). The downside of this is that it needs more resources (here:

RAM) and slows down add/remove operations on the list a bit. These principles can be

transferred to database indexes, just that the primary resource consumed is disk space.

Index types (String)

Java

Kotlin

Since 2.0.0

ObjectBox 2.0 introduced index types. Before, every index used the property value for all

look-ups. Now, ObjectBox can also use a hash to build an index. Because String

properties are typically taking more space than scalar values, ObjectBox switched the

default index type to hash for strings.

You can instruct ObjectBox to use a value-based index for a String property by

specifying the index type :

...1
@Index(type = IndexType.VALUE)2
private String name;3
...4

...1
@Index(type = IndexType.VALUE)2
var name: String? = null,3
...4

Keep in mind that for String , depending on the length of your values, a value-based

index may require more storage space than the default hash-based index.

ObjectBox supports these index types:

Not specified or DEFAULT Uses best index based on property type (HASH for

String , VALUE for others).

VALUE Uses property values to build index. For String, this may require more

storage than a hash-based index.

HASH Uses 32-bit hash of property values to build index. Occasional collisions may

occur which should not have any performance impact in practice. Usually a better

choice than HASH64, as it requires less storage.

HASH64 Uses long hash of property values to build the index. Requires more storage

than HASH and thus should not be the first choice in most cases.

When migrating data from pre-2.0 ObjectBox versions, the default index

type for strings has changed from value to hash. With a plain @Index

annotation this will update the indexes automatically: the old value-based

indexes will be deleted and the new hash-bashed indexes will be build. A side

effect of this is that the database file might grow in the process. If you want to

prevent this, you stick to the "old" index type using

 @Index(type = IndexType.VALUE) .

Limits of hash-based indexes: Hashes work great for equality checks, but not

for "starts with" type conditions. If you frequently use those, you should use

value-based indexes instead.

Unique constraints

Since 2.0.0

Annotate a property with @Unique to enforce that values are unique before an entity is

put:

Java

Kotlin

Java

...1
@Unique2
private String name;3
...4

...1
@Unique2
var name: String? = null,3
...4

A put() operation will abort and throw a UniqueViolationException if the unique

constraint is violated:

try {1
 box.put(new User("Sam Flynn"));2
} catch (UniqueViolationException e) {3
 // A User with that name already exists.4
}5

Kotlin

try {1
 box.put(User("Sam Flynn"))2
} catch (e: UniqueViolationException) {3
 // A User with that name already exists.4
}5

Unique constraints are based on an index. You can further configure the index

by adding an @Index annotation.

Relations

Creating to-one and to-many relations between objects is possible as well, see the

Relations documentation for details.

Triggering generation

Once your entity schema is in place, you can trigger the code generation process by

compiling your project. For example using Build > Make project in Android Studio.

If you encounter errors after changing your entity classes, try to rebuild (clean, then build)
your project to make sure old generated classes are cleaned.

Android

Android Local Unit Tests

Android Local Unit Tests

ObjectBox supports local unit tests. This gives you the full ObjectBox functionality for

running super fast test directly on your development machine.

On Android, unit tests can either run on an Android device (or emulator), so called

instrumented tests, or they can run on your local development machine. Running local unit

tests is typically much faster.

To learn how local unit tests for Android work in general have a look at the Android

developers documentation on Building Local Unit Tests. Read along to learn how to use

ObjectBox in your local unit tests.

Set Up Your Testing Environment

The setup step is only required for ObjectBox 1.4 or older (or if you want to

manually add the dependency). In newer versions the ObjectBox plugin

automatically adds the native ObjectBox library required for your current

operating system.

Add the native ObjectBox library to your existing test dependencies in your app’s

build.gradle file:

dependencies {1
 // Required -- JUnit 4 framework2
 testImplementation 'junit:junit:4.12'3
 // Optional -- manually add native ObjectBox library to override auto-4
 testImplementation "io.objectbox:objectbox-linux:$objectboxVersion"5
 testImplementation "io.objectbox:objectbox-macos:$objectboxVersion"6
 testImplementation "io.objectbox:objectbox-windows:$objectboxVersion"7

https://developer.android.com/training/testing/unit-testing/index.html
https://developer.android.com/training/testing/unit-testing/local-unit-tests.html

}8

 Local unit tests are currently only supported on 64-bit operating systems.

Note: on Windows you might have to install the Microsoft Visual C++ 2015

Redistributable (x64) packages to use the native library.

Create a Local Unit Test Class

You create your local unit test class as usual under module-name/src/test/java/ . To use

ObjectBox in your test methods you need to build a BoxStore instance using the generated

MyObjectBox class of your project. You can use the directory(File) method on the

BoxStore builder to ensure the test database is stored in a specific folder on your machine.

To start with a clean database for each test you can delete the existing database using

BoxStore.deleteAllFiles(File).

The following example shows how you could implement a local unit test class that uses

ObjectBox:

public class NoteTest {1
 2
 private static final File TEST_DIRECTORY = new File("objectbox-example3
 private BoxStore store;4
 5
 @Before6
 public void setUp() throws Exception {7
 // delete database files before each test to start with a clean da8
 BoxStore.deleteAllFiles(TEST_DIRECTORY);9
 store = MyObjectBox.builder()10
 // add directory flag to change where ObjectBox puts its d11
 .directory(TEST_DIRECTORY)12
 // optional: add debug flags for more detailed ObjectBox l13
 .debugFlags(DebugFlags.LOG_QUERIES | DebugFlags.LOG_QUERY_14
 .build();15
 }16

https://www.microsoft.com/en-US/download/details.aspx?id=48145
http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStoreBuilder.html#directory-java.io.File-
http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStore.html#deleteAllFiles-java.io.File-

 17
 @After18
 public void tearDown() throws Exception {19
 if (store != null) {20
 store.close();21
 store = null;22
 }23
 BoxStore.deleteAllFiles(TEST_DIRECTORY);24
 }25
 26
 @Test27
 public void exampleTest() {28
 // get a box and use ObjectBox as usual29
 Box<Note> noteBox = store.boxFor(Note.class);30
 assertEquals(...);31
 }32
 33
}34

 Note: To help diagnose issues you can enable log output for ObjectBox

actions, such as queries, by specifying one or more debug flags when building

BoxStore.

Base class for tests

 It’s usually a good idea to extract the setup and tear down methods into a base class for

your tests. E.g.:

public abstract class AbstractObjectBoxTest {1
 2
 protected static final File TEST_DIRECTORY = new File("objectbox-examp3
 protected BoxStore store;4
 5
 @Before6
 public void setUp() throws Exception {7
 // delete database files before each test to start with a clean da8
 BoxStore.deleteAllFiles(TEST_DIRECTORY);9
 store = MyObjectBox.builder()10

http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStoreBuilder.html#debugFlags-int-

 // add directory flag to change where ObjectBox puts its d11
 .directory(TEST_DIRECTORY)12
 // optional: add debug flags for more detailed ObjectBox l13
 .debugFlags(DebugFlags.LOG_QUERIES | DebugFlags.LOG_QUERY_14
 .build();15
 }16
 17
 @After18
 public void tearDown() throws Exception {19
 if (store != null) {20
 store.close();21
 store = null;22
 }23
 BoxStore.deleteAllFiles(TEST_DIRECTORY);24
 }25
}26

Testing Entities with Relations

Only required for ObjectBox 1.4.4 or older.

To test entities that have relations, like ToOne or ToMany properties, on the local JVM you

must initialize them and add a transient BoxStore field.

See the documentation about "initialization magic" for an example and what to look out for.

Background: the "initialization magic" is normally done by the ObjectBox plugin using the

Android plugin Transform API which allows to modify byte-code. But transforms do not run

for local unit tests (they do for instrumented tests).

LiveData (Arch. Comp.)

ObjectBox - LiveData with Android Architecture
Components

Since 1.2.0. Have a look at the example project on GitHub.

As an alternative to ObjectBox’ data observers and reactive queries, you can opt for the

LiveData approach supplied by Android Architecture Components. ObjectBox comes with

ObjectBoxLiveData , a class that can be used inside your ViewModel classes.

A simple ViewModel implementation for our note example app includes the special

ObjectBoxLiveData that is constructed using a regular ObjectBox query:

public class NoteViewModel extends ViewModel {1
 2
 private ObjectBoxLiveData<Note> noteLiveData;3
 4
 public ObjectBoxLiveData<Note> getNoteLiveData(Box<Note> notesBox) {5
 if (noteLiveData == null) {6
 // query all notes, sorted a-z by their text7
 noteLiveData = new ObjectBoxLiveData<>(notesBox.query().order(8
 }9
 return noteLiveData;10
 }11
}12

Note that we did choose to pass the box to getNoteLiveData() . Instead you could use

AndroidViewModel , which provides access to the Application context, and then call

((App)getApplication()).getBoxStore().boxFor() inside the ViewModel. However,

the first approach has the advantage that our ViewModel has no reference to Android

classes. This makes it easier to unit test.

https://github.com/objectbox/objectbox-examples/tree/master/android-app-arch
https://developer.android.com/topic/libraries/architecture/livedata.html
https://developer.android.com/topic/libraries/architecture/viewmodel.html

Now, when creating the activity or fragment we get the ViewModel, access its LiveData

and finally register to observe changes:

NoteViewModel model = ViewModelProviders.of(this).get(NoteViewModel.class)1
model.getNoteLiveData(notesBox).observe(this, new Observer<List<Note>>() {2
 @Override3
 public void onChanged(@Nullable List<Note>; notes) {4
 notesAdapter.setNotes(notes);5
 }6
});7

The ObjectBoxLiveData will now subscribe to the query and notify observers when the

results of the query change, if there is at least one observer. In this example the activity is

notified if a note is added or removed. If all observers are destroyed, the LiveData will

cancel the subscription to the query.

If you have used ObjectBox observers in the past this might sound familiar. Well, because

it is! ObjectBoxLiveData just wraps a DataObserver on the query you give to it.

Paging (Arch. Comp.)

Since 2.0.0

ObjectBox supports integration with the Paging library that is part of Google's Android

Architecture Components. To that end, the ObjectBox Android library (

objectbox-android) provides the ObjectBoxDataSource class. It is an implementation

of the Paging library's PositionalDataSource .

Note: the following assumes that you have already added and set up the

Paging library in your project.

Using ObjectBoxDataSource

Within your ViewModel , similar to creating a LiveData directly, you first build your

ObjectBox query. But then, you construct an ObjectBoxDataSource factory with it instead.

This factory is then passed to a LivePagedListBuilder to build the actual LiveData .

Here is an example of a ViewModel class doing just that:

public class NotePagedViewModel extends ViewModel {1
 2
 private LiveData<PagedList<Note>> noteLiveDataPaged;3
 4
 public LiveData<PagedList<Note>> getNoteLiveDataPaged(Box<Note> notesB5
 if (noteLiveDataPaged == null) {6
 // query all notes, sorted a-z by their text7
 Query<Note> query = notesBox.query().order(Note_.text).build()8
 // build LiveData9
 noteLiveDataPaged = new LivePagedListBuilder<>(10
 new ObjectBoxDataSource.Factory<>(query),11
 20 /* page size */12
).build();13
 }14

https://developer.android.com/topic/libraries/architecture/paging/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/reference/android/arch/paging/PositionalDataSource
https://developer.android.com/topic/libraries/architecture/paging/

 return noteLiveDataPaged;15
 }16
}17

Note that the LiveData holds your entity class, here Note , wrapped inside a

PagedList . You observe the LiveData as usual in your activity or fragment, then submit

the PagedList on changes to your PagedListAdapter of the Paging library.

We will not duplicate how this works here, see the Paging library documentation for details

about this.

Next steps

Have a look at the ObjectBox Architecture Components example code.

Check out ObjectBox support for LiveData.

Learn how to build queries.

https://developer.android.com/topic/libraries/architecture/paging/
https://github.com/objectbox/objectbox-examples/tree/master/android-app-arch

App Bundle, split APKs and Multidex

Your app might observe crashes due to UnsatisfiedLinkError or LinkageError (since

ObjectBox 2.3.4) on some devices. This has mainly two reasons: If your app uses the App

Bundle format, the legacy split APK feature or Multidex the native library can't be found. Or

if your minimum SDK is below API 23 (Marshmallow), there are known bugs in Android's

native library loading code.

Let us know if you have more info on this in GitHub issue 605.

App Bundle and split APKs

When using an App Bundle or split APKs Google Play only delivers the split APKs required

for each user's device configuration, including its architecture (ABI). If users bypass

Google Play to install your app ("sideloading") they might not install all of the required split

APKs. If the split APK containing the ObjectBox native library required for the device ABI is

missing, your app will crash with LinkageError when building BoxStore.

Update: With the Play Core library Google now provides an official, easy

solution to detect if an app is incorrectly installed and direct the user to fix the

problem (e.g. to reinstall the app from Google Play). We recommend using
the Play Core library instead of the below workarounds. See how we

updated our example app to use the Play Core detection.

If you do not want to use the Play Core library, there are two alternatives:

Alternative: turn off splitting by ABI

The simplest solution is to always include native libraries for all supported ABIs. However,

this will increase the download size of your app for all users.

https://developer.android.com/guide/app-bundle
https://developer.android.com/studio/build/multidex
https://github.com/objectbox/objectbox-java/issues/605
https://developer.android.com/guide/app-bundle/sideload-check
https://github.com/objectbox/objectbox-examples/pull/53

android {1
 bundle {2
 abi {3
 // This property is set to true by default.4
 enableSplit = false5
 }6
 }7
}8

Source: Android Developers

Alternative: Catch exception and inform users

You can guard the MyObjectBox build call and for example display an activity with an info

message (e.g. direct users to reinstall the app from Google Play, send you an error report,

...):

// guard the build call and set some flag (here setting the boxStore field 1
try {2
 boxStore = MyObjectBox.builder()3
 .androidContext(context.getApplicationContext())4
 .build();5
} catch (LinkageError e) {6
 boxStore = null;7
 Log.e(App.TAG, "Failed to load ObjectBox: " + e.getMessage());8
}9

10
11

// then for example in the main activity check the flag in onCreate and 12
// direct to an info/error message without the app crashing:13
if (ObjectBox.get() == null) {14
 startActivity(new Intent(this, ErrorActivity.class));15
 finish();16
 return;17
}18

As an example see how we added this to our Android app example.

https://developer.android.com/studio/projects/dynamic-delivery/configure-base#disable_config_apks
https://github.com/objectbox/objectbox-examples/commit/e3af09d91181eea11db8959ceddf360f7b35a602

Buggy devices

On some devices and if your minimum SDK is below API 23 (Marshmallow), loading the

native library may fail due to bugs. To counter this ObjectBox includes support for the

ReLinker tool which will try to extract the native library manually if loading it normally fails.

To set this up add ReLinker to your dependencies:

implementation 'com.getkeepsafe.relinker:relinker:1.3.1'

ObjectBox is calling ReLinker via reflection. If you are using ProGuard or

Multidex, make sure to add keep rules so that ReLinker code is not stripped

from the final app or is not in the primary dex file.

For ProGuard add this line:

-keep class com.getkeepsafe.relinker.** { *; }

For Multidex add a multiDexKeepProguard file to your build file:

android {1
 buildTypes {2
 release {3
 multiDexKeepProguard file('multidex-config.pro')4
 }5
 }6
}7

And in the multidex-config.pro file add the same rule as above:

https://github.com/KeepSafe/ReLinker

-keep class com.getkeepsafe.relinker.** { *; }

Multidex supports two file formats to keep files. We are using the ProGuard

format (multiDexKeepProguard property). You can also use the

multiDexKeepFile property, but make sure to adapt the rule above to that

format.

Enable ReLinker debug log

To enable debug logs for ReLinker you can pass a custom ReLinkerInstance when

building BoxStore :

boxStore = MyObjectBox.builder()1
 .androidContext(App.this)2
 .androidReLinker(ReLinker.log(new ReLinker.Logger() {3
 @Override4
 public void log(String message) { Log.d(TAG, message); }5
 }))6
 .build();7

https://developer.android.com/studio/build/multidex#keep

Java Desktop Apps

ObjectBox – Embedded Database for Java Desktop
Apps

ObjectBox does not only work with Android projects, but also for plain Java (JVM) desktop

apps running on Windows, Linux, and macOS. Just like on Android, ObjectBox stands for

a super simple API and high performance. It’s designed for objects and outperforms other

database and ORM solutions. Because it is an embedded database, ObjectBox runs in

your apps’ process and needs no maintenance. Read on to learn how to create a Java

project using ObjectBox. We believe it’s fairly easy. Please let us know your thoughts on it.

Desktop Project Setup

Because ObjectBox comes with a Gradle plugin, you use Gradle as a build system.

There is an experimental Maven plugin available. See the Java Maven

example.

To get set up, in your project’s build.gradle file, you apply the ObjectBox Gradle plugin.

This must be done after applying the Java plugin.

This is how a Gradle build file using ObjectBox typically looks like:

https://github.com/objectbox/objectbox-examples/tree/master/java-main-maven

Gradle 5.2 or newer

buildscript {1
 ext.objectboxVersion = '2.5.1'2
 repositories {3
 jcenter()4
 }5
 dependencies {6
 classpath "io.objectbox:objectbox-gradle-plugin:$objectboxVe7
 }8
}9

10
repositories {11
 jcenter()12
}13

14
apply plugin: 'java'15
apply plugin: 'io.objectbox'16

If you use IntelliJ IDEA, make sure to use 2019.1 or newer as it has

improved Gradle support, like delegating build actions to Gradle.

Gradle 5.1 or older

In Gradle 5.1 or older annotation processor support is incomplete, so adding an

annotation processor plugin (e.g. gradle-apt-plugin) is recommended:

buildscript {1
 ext.objectboxVersion = '2.5.1'2
 repositories {3
 jcenter()4
 maven { url "https://plugins.gradle.org/m2/" }5
 }6
 dependencies {7
 classpath "net.ltgt.gradle:gradle-apt-plugin:0.20"8
 classpath "io.objectbox:objectbox-gradle-plugin:$objectboxVe9
 }10
}11

12
repositories {13
 jcenter()14
}15

16
apply plugin: 'java'17
// Annotation processor plugin for better Gradle + IntelliJ support.18
apply plugin: 'net.ltgt.apt-idea'19
apply plugin: 'io.objectbox'20

This set up is the main difference between the Android and plain Java desktop setup.

Other than this, ObjectBox works the same across platforms.

Native Libraries

Under the hood, ObjectBox is an object database running mostly in native code written in

C/C++ for optimal performance (there’s no way to make this work as fast in plain Java).

Thus, ObjectBox will load a native library: a “.dll” on Windows, a “.so” on Linux, and a

“.dylib” on macOS. By default, the ObjectBox Gradle plugin adds a dependency to the

native library matching your system. This means that your app is already set up to run on

your system.

https://github.com/tbroyer/gradle-apt-plugin

Note: on Windows you might have to install the Microsoft Visual C++ 2015

Redistributable (x64) packages to use the ObjectBox DLL.

Note that ObjectBox binaries are build for 64 bit systems for best performance. Talk to us if

you require 32 bit support.

Add Libraries for distribution

While the default build configuration ensures that your app runs on your development

system, you may want to support all major platforms (Windows, Linux, macOS) when you

distribute your app. For this, just add all platform dependencies to your project’s

build.gradle file like this:

dependencies {1
 // Optional: include all native libraries for distribution2
 implementation "io.objectbox:objectbox-linux:$objectboxVersion"3
 implementation "io.objectbox:objectbox-macos:$objectboxVersion"4
 implementation "io.objectbox:objectbox-windows:$objectboxVersion"5
}6

 For reference, the following dependencies to the ObjectBox Java API and annotation

processor are added by default by the ObjectBox Gradle plugin. Usually, there’s no need

to set them up manually:

dependencies {1
 // Added automatically by the plugin - just for reference.2
 implementation "io.objectbox:objectbox-java:$objectboxVersion"3
 annotationProcessor "io.objectbox:objectbox-processor:$objectboxVersio4
}5

Optional: Change the Model File Path

https://www.microsoft.com/en-US/download/details.aspx?id=48145

By default, the ObjectBox model file is stored in

module-name/objectbox-models/default.json . You can change the file path and name

by passing the objectbox.modelPath argument to the ObjectBox annotation processor.

In your project’s build.gradle file after the java plugin, add the necessary compiler

argument:

tasks.withType(JavaCompile) {1
 options.compilerArgs += ["-Aobjectbox.modelPath=$projectDir/schemas/o2
}3

Optional: Change the MyObjectBox package

 1.5 or newer

By default the MyObjectBox class is generated in the same or a parent package of your

entity classes. You can define a specific package by passing the

objectbox.myObjectBoxPackage argument to the ObjectBox annotation processor.

In your project’s build.gradle file after the java plugin, add the necessary compiler

argument:

tasks.withType(JavaCompile) {1
 options.compilerArgs += ["-Aobjectbox.modelPath=$projectDir/schemas/o2
}3

Optional: Enable Debug Mode

You can enable debug output for the plugin and for the annotation processor if you

encounter issues while setting up your project.

Just add the necessary options in your project’s build.gradle file after the java and

io.objectbox plugin

// enable debug output for plugin1
objectbox {2
 debug true3
}4
// enable debug output for annotation processor5
tasks.withType(JavaCompile) {6
 options.compilerArgs += ["-Aobjectbox.debug=true"]7
}8

Add Entity Classes

You must create at least one class annotated with @Entity to use ObjectBox. If you don’t

know yet how to do this, learn here how to create and annotate entity classes.

The following code snippet shows how a simple entity class might look like:

@Entity1
public class Note {2
 3
 @Id4
 public long id;5
 6
 public String text;7
 public String comment;8
 public Date date;9
 10
 public Note(long id, String text, String comment, Date date) {11
 this.id = id;12
 this.text = text;13
 this.comment = comment;14
 this.date = date;15
 }16
 17
 public Note() {18
 }19
}20

Build BoxStore

To get a Box for saving your entities you need to build a BoxStore first. After creating your

entity classes and building your project, e.g. by running gradlew build , the class

MyObjectBox will be generated. Use MyObjectBox.builder() to build your BoxStore.

This code snippet demonstrates a simple program that builds a BoxStore and saves a

Note entity object:

public static void main(String[] args) {1
 BoxStore store = MyObjectBox.builder().name("objectbox-notes-db").buil2
 Box<Note> box = store.boxFor(Note.class);3
 4
 String text = args.length > 0 ? String.join(" ", args) : "No text give5
 box.put(new Note(text));6
 7
 System.out.println(box.count() + " notes in ObjectBox database:");8
 for (Note note : box.getAll()) {9
 System.out.println(note);10
 }11
 store.close();12
}13

 You can use the name(String) method of the builder to change the directory name your

database files are stored in. See the BoxStoreBuilder documentation for more

configuration options.

Building Unit Tests

 In your project’s build.gradle file, add the JUnit testing framework to your test

dependencies:

dependencies {1
 testCompile 'junit:junit:4.12'2
}3

http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStoreBuilder.html#name-java.lang.String-
http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStoreBuilder.html

You create your unit test classes as usual under module-name/src/test/java/ . To use

ObjectBox in your test methods you need to build a BoxStore instance using the generated

MyObjectBox class of your project. You can use the directory(File) method on the

BoxStore builder to ensure the test database is stored in a specific folder on your machine.

To start with a clean database for each test you can delete the existing database using

BoxStore.deleteAllFiles(File).

The following example shows how you could implement a unit test class that uses

ObjectBox:

public class NoteTest {1
 private File boxStoreDir;2
 private BoxStore store;3
 4
 @Before5
 public void setUp() throws IOException {6
 // store the database in the systems temporary files folder7
 File tempFile = File.createTempFile("object-store-test", "");8
 // ensure file does not exist so builder creates a directory inste9
 tempFile.delete();10
 boxStoreDir = tempFile;11
 store = MyObjectBox.builder()12
 // add directory flag to change where ObjectBox puts its d13
 .directory(boxStoreDir)14
 // optional: add debug flags for more detailed ObjectBox l15
 .debugFlags(DebugFlags.LOG_QUERIES | DebugFlags.LOG_QUERY_16
 .build();17
 }18
 19
 @After20
 public void tearDown() throws Exception {21
 if (store != null) {22
 store.close();23
 store.deleteAllFiles();24
 }25
 }26
 27
 @Test28
 public void testPutAndGet() {29
 Box<Note> box = store.boxFor(Note.class);30
 assertEquals(...);31
 }32
}33

http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStoreBuilder.html#directory-java.io.File-
http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStore.html#deleteAllFiles-java.io.File-

 To help diagnose issues you can enable log output for ObjectBox actions, such as

queries, by specifying one or more debug flags when building BoxStore.

http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStoreBuilder.html#debugFlags-int-

Kotlin Support

ObjectBox and Kotlin

ObjectBox comes with full Kotlin support for Android. This allows entities to be modeled in

Kotlin classes (regular and data classes). With Kotlin support you can build faster apps

even faster.

This page assumes that you have added ObjectBox to your project and that you

are familiar with basic functionality. The Getting Started page will help you out if

you are not. This page discusses additional capabilities for Kotlin only.

Getting started /getting-started

Kotlin Entities

ObjectBox supports regular and data classes for entities. However, @Id properties must

be var (not val) because ObjectBox assigns the ID after putting a new entity. They also

should be of non-null type Long with the special value of zero for marking entities as new.

See the Getting Started or Entity Annotations guide for examples.

Getting started /getting-started

Entity Annotations /entity-annotations

Defining Relations in Kotlin Entities

When defining relations in Kotlin, keep in mind that relation properties must be var .

Otherwise they can not be initialized as described in the relations docs. To avoid null

checks use a lateinit modifier. When using a data class this requires the relation property to

be moved to the body.

See the Relations page for examples.

Relations /relations

Two data classes that have the same property values (excluding those defined

in the class body) are equal and have the same hash code. Keep this in mind

when working with ToMany which uses a HashMap to keep track of changes.

E.g. adding the same data class multiple times has no effect, it is treated as the

same entity.

Using the provided extension functions

Since 2.0.0

To simplify your code, you might want to use the Kotlin extension functions provided by

ObjectBox. The library containing them is added automatically if the Gradle plugin detects

a Kotlin project.

To add it manually, modify the dependencies section in your app's build.gradle file:

dependencies {1

https://kotlinlang.org/docs/reference/data-classes.html

 implementation "io.objectbox:objectbox-kotlin:$objectboxVersion"2
}3

Now have a look at what is possible with the extensions compared to standard Kotlin

idioms:

Get a box:

// Regular:1
val box = store.boxFor(DataClassEntity::class.java)2

3
// With extension:4
val box: Box<DataClassEntity> = store.boxFor()5

Build a query:

// Regular:1
val query = box.query().run {2
 equal(property, value)3
 order(property)4
 build()5
}6

7
// With extension:8
val query = box.query {9
 equal(property, value)10
 order(property)11
}12

Use the in filter of a query:

// Regular:1
val query = box.query().`in`(property, array).build()2

3
// With extension:4
val query = box.query().inValues(property, array).build()5

Modify a ToMany:

// Regular:1
toMany.apply { 2
 reset()3
 add(entity)4
 removeById(id)5
 applyChangesToDb()6
}7

8
// With extension:9
toMany.applyChangesToDb(resetFirst = true) { // default is false10
 add(entity)11
 removeById(id)12
}13

Something missing? Let us know what other extension functions you want us to add.

Next Steps

Check out the Kotlin example on GitHub.

Continue with Getting Started.

https://github.com/objectbox/objectbox-java/issues/446
https://github.com/objectbox/objectbox-examples/tree/master/android-app-kotlin

Queries

ObjectBox queries return persisted objects that match user defined criteria. With

ObjectBox DB you use the QueryBuilder class to specify criteria and create Query objects.

The Query class will actually run the query and return matching objects.

QueryBuilder

The QueryBuilder<T> class lets you build custom queries for your entities. Create an

instance via Box.query() .

QueryBuilder offers several methods to define query conditions for properties of an

entity. To specify a property ObjectBox does not use Strings but meta information

"underscore" classes (like User_) that are generated during build time. The meta

information classes have a static field for each property (like User_.firstName). This

allows to reference properties safely with compile time checks to prevent runtime errors,

for example because of typos.

Here are two examples using a simple and a more complicated query:

Simple condition example: Query for all users with the first name “Joe”:

List<User> joes = userBox.query().equal(User_.firstName, "Joe").build().find

Multiple conditions example: Get users with the first name “Joe” that are born later than

1970 and whose last name starts with “O”.

QueryBuilder<User> builder = userBox.query();1
builder.equal(User_.firstName, "Joe")2
 .greater(User_.yearOfBirth, 1970)3
 .startsWith(User_.lastName, "O");4
List<User> youngJoes = builder.build().find();5

http://objectbox.io/files/objectbox-java/current/io/objectbox/query/QueryBuilder.html

New Query API

The new Query API is in preview. Share your feedback in the GitHub issue.

ObjectBox 3.0.0-alpha1+ introduces a new query API that accepts complex nested

conditions, e.g. the equivalent of (A or B) and (C or D) .

To build a query with the new API use Box.query(condition) and supply a condition

built using entity Property methods, like property.equal(value) . All properties of an

entity can be accessed using its underscore class. For example, for an entity User a

property could be User_.firstName , a condition using it could be

User_.firstName.equal("Joe") .

Simple condition example: Query for all users with the first name “Joe”.

List<User> joes = userBox.query(User_.firstName.equal("Joe"))1
 .build()2
 .find();3

Multiple conditions example: Get users with the first name “Joe” that are born later than

1970 and whose last name starts with “O”.

https://github.com/objectbox/objectbox-java/issues/201

Java

Kotlin

Java

List<User> youngJoes = userBox.query(1
 User_.firstName.equal("Joe")2
 .and(User_.yearOfBirth.greater(1970))3
 .and(User_.lastName.startsWith("O")))4
 .build()5
 .find();6

val youngJoes = userBox.query(1
 User_.firstName equal "Joe"2
 and (User_.yearOfBirth greater 1970)3
 and (User_.lastName startsWith "O")4
 .build()5
 .find();6

Conditions are combined with QueryCondition.and(condition) or

QueryCondition.or(condition) . AND has precedence over OR.

To nest conditions pass a single or combined condition .

// equal AND (less OR oneOf)1
Query<User> query = box.query(2
 User_.firstName.equal("Joe")3
 .and(User_.age.less(12)4
 .or(User_.stamp.oneOf(new long[]{1012}))))5
 .order(User_.age)6
 .build();7

Kotlin

// equal AND (less OR oneOf)1
val query = box.query(2
 User_.firstName equal "Joe"3
 and (User_.age less 124
 or (User_.stamp oneOf longArrayOf(1012))))5
 .order(User_.age)6
 .build()7

Other notable changes

property.oneOf(array) replaces the in(property, array) (

inValues(property, array) for Kotlin) condition.

Use Kotlin infix functions to write condition and condition and

condition or condition .

Use condition.alias(aliasName) to set an alias for a condition that can later be

used with the Query setParameter methods.

Notable conditions

In addition to expected conditions like equal() , notEqual() , greater() and less()

there are also conditions like:

isNull() and notNull() ,

between() to filter for values that are between the given two,

in() and notIn() to filter for values that match any in the given array,

startsWith() , endsWith() and contains() for extended String filtering.

In addition, there is and() and or() to build more complex combinations of conditions.

For an overview of all available criteria, please refer to the QueryBuilder class and its

method documentations.

http://objectbox.io/files/objectbox-java/current/io/objectbox/query/QueryBuilder.html

Ordering results

In addition to specifying conditions you can order the returned results using the order()

method:

userBox.query().equal(User_.firstName, "Joe")1
 .order(User_.lastName) // in ascending order, ignoring case2
 .find();3

You can also pass flags to order() to sort in descending order, to sort case sensitive or

to specially treat null values. For example to sort the above results in descending order

and case sensitive instead:

userBox.query().equal(User_.firstName, "Joe")1
 .order(User_.lastName, QueryBuilder.DESCENDING | QueryBuilder.CASE_SEN2
 .find();3

Order conditions can also be chained. Check the method documentation for details.

Query

 Queries are created (and not yet executed) by calling build() on the QueryBuilder .

Query<User> query = builder.build();

Finding objects

 There are a couple of find methods to retrieve objects matching the query:

http://objectbox.io/files/objectbox-java/current/io/objectbox/query/QueryBuilder.html#order-io.objectbox.Property-int-

// return all entities matching the query1
List<User> joes = query.find();2

3
// return only the first result or null if none4
User joe = query.findFirst();5

6
// return the only result or null if none, throw if more than one result7
User joe = query.findUnique();8

To return all entities matching the query simply call find() .

To only return the first result, use findFirst() .

If you expect a unique result call findUnique() instead. It will give you a single result or

null, if no matching entity was found and throw an exception if there was more than one

result.

Reusing Queries and Parameters

If you frequently run a Query you should cache the Query object and re-use it. To make

a Query more reusable you can change the values, or query parameters, of each

condition you added even after the Query is built. Let's see how.

Assume we want to find a list of User with specific firstName values. First, we build a

regular Query with an equal() condition for firstName . Because we have to pass an

initial parameter value to equal() but plan to override it before running the Query later,

we just pass an empty string:

// build query1
Query<User> query = userBox.query().equal(User_.firstName, "").build();2

Now at some later point we want to actually run the Query . To set a value for the

firstName parameter we call setParameter() on the Query and pass the firstName

property and the new parameter value:

// change firstName parameter to "Joe", get results1
List<User> joes = query.setParameter(User_.firstName, "Joe").find();2
...3
// change firstName parameter to "Jake", get results4
List<User> jakes = query.setParameter(User_.firstName, "Jake").find();5

So you might already be wondering, what happens if you have more than one condition

using firstName ? For this purpose you can assign each parameter an alias by calling

parameterAlias() right after specifying the condition:

// assign alias "name" to the equal() query parameter1
Query<User> query = userBox.query()2
 .equal(User_.firstName, "").parameterAlias("name");3

Then, when setting a new parameter value pass the alias instead of the property:

// change parameter with alias "name" to "Joe", get results1
List<User> joes = query.setParameter("name", "Joe").find();2

Limit, Offset, and Pagination

 Sometimes you only need a subset of a query, for example the first 10 elements to display

in your user interface. This is especially helpful (and resourceful) when you have a high

number of entities and you cannot limit the result using query conditions only. The built

Query<T> has a .find(long offset,long limit) method with offset and limit

arguments:

Query<User> query = userBox.query().equal(UserProperties.FirstName, "Joe")1
List<User> joes = query.find(/* offset by */ 10, /* limit to */ 5 /* resul2

offset: The first offset results are skipped.

limit: At most limit results of this query are returned.

Lazy loading results

 To avoid loading query results right away, Query offers findLazy() and

findLazyCached() which return a LazyList of the query results.

 LazyList is a thread-safe, unmodifiable list that reads entities lazily only once they are

accessed. Depending on the find method called, the lazy list will be cached or not. Cached

lazy lists store the previously accessed objects to avoid loading entities more than once.

Some features of the list are limited to cached lists (e.g. features that require the entire

list). See the LazyList class documentation for more details.

Removing Objects

 To remove all objects matching a query, call query.remove() .

PropertyQuery

If you only want to return the values of a certain property and not a list of full objects you

can use a PropertyQuery. After building a query simply call property(Property) to

define the property followed by the appropriate find method.

For example, instead of getting all User s, to just get their email addresses:

String[] emails = userBox.query().build()1
 .property(User_.email)2
 .findStrings();3

In general there is always a find method to just return the value of the first result, like

findString() , or the values of all results, like findStrings() .

http://objectbox.io/files/objectbox-java/current/io/objectbox/query/LazyList.html
http://objectbox.io/files/objectbox-java/current/io/objectbox/query/LazyList.html
http://objectbox.io/files/objectbox-java/current/io/objectbox/query/LazyList.html
http://objectbox.io/files/objectbox-java/current/io/objectbox/query/PropertyQuery.html

Note: the returned array of property values is not in any particular order, even

if you did specify an order when building the query.

Handling null values

By default null values are not returned. However, you can specify a replacement value

to return if a property is null:

// returns 'unknown' if email is null1
String[] emails = userBox.query().build()2
 .property(User_.email)3
 .nullValue("unknown")4
 .findStrings();5

Distinct and unique results

The property query can also only return distinct values:

// returns 'joe'1
String[] names = userBox.query().build()2
 .property(User_.firstName)3
 .distinct()4
 .findStrings();5

By default the case of strings is ignored. However, the distinct call can be overloaded to

enable case sensitivity:

// returns 'Joe', 'joe', 'JOE'1
String[] names = userBox.query().build()2
 .property(User_.firstName)3
 .distinct(StringOrder.CASE_SENSITIVE)4
 .findStrings();5

If only a single value is expected to be returned the query can be configured to throw if that

is not the case:

// throws if not exactly one name1
String[] names = userBox.query().build().equal(User_.isAdmin, true) 2
 .property(User_.firstName)3
 .unique()4
 .findStrings();5

The distinct and unique flags can be combined.

Aggregating values

Property queries (JavaDoc) also offer aggregate functions to directly calculate the

minimum, maximum, average, sum and count of all found values:

min() / minDouble() : Finds the minimum value for the given property over all

objects matching the query.

max() / maxDouble() : Finds the maximum value.

sum() / sumDouble() : Calculates the sum of all values. Note: the non-double

version detects overflows and throws an exception in that case.
avg() : Calculates the average (always a double) of all values.

count() : returns the number of results. This is faster than finding and getting the

length of the result array. Can be combined with distinct() to count only the

number of distinct values. Since 2.0.0.

Add query conditions for related entities (links)

Since 2.0.0

http://objectbox.io/files/objectbox-java/current/io/objectbox/query/PropertyQuery.html

Java

Kotlin

After creating a relation between entities, you might want to add a query condition for a

property that only exists in the related entity. In SQL this is solved using JOINs. But as

ObjectBox is not a SQL database we built something very similar: links. Let's see how this

works using an example.

Assume there is a Person that can be associated with multiple Address entities:

@Entity1
public class Person {2
 @Id long id;3
 String name;4
 ToMany<Address> addresses;5
}6
@Entity7
public class Address {8
 @Id long id;9
 String street;10
 String zip;11
}12

@Entity1
class Person {2
 @Id var id: Long = 03
 var name: String? = null4
 lateinit var addresses: ToMany<Address>5
}6
@Entity7
class Address {8
 @Id var id: Long = 09
 var street: String? = null10
 var zip: String? = null11
{12

Java

Kotlin

To get a Person with a certain name that also lives on a specific street, we need to query

the associated Address entities of a Person . To do this, use the link(RelationInfo)

method of the query builder to tell that the addresses relation should be queried. Then

add a condition for Address :

// get all Person objects named "Elmo"...1
QueryBuilder<Person> builder = personBox2
 .query().equal(Person_.name, "Elmo");3
// ...which have an address on "Sesame Street"4
builder.link(Person_.addresses).equal(Address_.street, "Sesame Stree5
List<Person> elmosOnSesameStreet = builder.build().find();6

// get all Person objects named "Elmo"...1
val builder = personBox.query().equal(Person_.name, "Elmo")2
// ...which have an address on "Sesame Street"3
builder.link(Person_.addresses).equal(Address_.street, "Sesame Stree4
val elmosOnSesameStreet = builder.build().find()5

What if we want to get a list of Address instead of Person ? If you know ObjectBox

relations well, you would probably add a @Backlink relation to Address and build your

query using it with link(RelationInfo) as shown above:

http://objectbox.io/files/objectbox-java/current/io/objectbox/query/QueryBuilder.html#link-io.objectbox.relation.RelationInfo-
http://objectbox.io/files/objectbox-java/current/io/objectbox/query/QueryBuilder.html#link-io.objectbox.relation.RelationInfo-

Java

Kotlin

@Entity1
public class Address {2
 // ...3
 @Backlink(to = "addresses")4
 ToMany<Person> persons;5
}6

7
// get all Address objects with street "Sesame Street"...8
QueryBuilder<Address> builder = addressBox9
 .query().equal(Address_.street, "Sesame Street");10
// ...which are linked from a Person named "Elmo"11
builder.link(Address_.persons).equal(Person_.name, "Elmo");12
List<Address> sesameStreetsWithElmo = builder.build().find();13

@Entity1
class Address {2
 // ...3
 @Backlink(to = "addresses")4
 lateinit var persons: ToMany<Person>5
}6

7
// get all Address objects with street "Sesame Street"...8
val builder = addressBox.query().equal(Address_.street, "Sesame Stre9
// ...which are linked from a Person named "Elmo"10
builder.link(Address_.persons).equal(Person_.name, "Elmo")11
val sesameStreetsWithElmo = builder.build().find()12

But actually you do not have to modify the Address entity (you still can if you need the

@Backlink elsewhere). Instead we can use the backlink(RelationInfo) method to

create a backlink to the addresses relation from Person just for that query:

http://objectbox.io/files/objectbox-java/current/io/objectbox/query/QueryBuilder.html#backlink-io.objectbox.relation.RelationInfo-

Java

Kotlin

Java

// get all Address objects with street "Sesame Street"...1
QueryBuilder<Address> builder = addressBox.query()2
 .equal(Address_.street, "Sesame Street");3
// ...which are linked from a Person named "Elmo"4
builder.backlink(Person_.addresses).equal(Person_.name, "Elmo");5
List<Address> sesameStreetsWithElmo = builder.build().find();6

// get all Address objects with street "Sesame Street"...1
val builder = addressBox.query().equal(Address_.street, "Sesame Stre2
// ...which are linked from a Person named "Elmo"3
builder.backlink(Person_.addresses).equal(Person_.name, "Elmo")4
val sesameStreetsWithElmo = builder.build().find()5

Eager Loading of Relations

By default relations are loaded lazily: when you first access a ToOne or ToMany property

it will perform a database lookup to get its data. On each subsequent access it will use a

cached version of that data.

List<Customer> customers = customerBox.query().build().find();1
// Customer has a ToMany called orders.2
// First access: this will cause a database lookup.3
Order order = customers.get(0).orders.get(0);4

Kotlin

Java

Kotlin

val customers = customerBox.query().build().find()1
// Customer has a ToMany called orders2
val order = customers[0].orders[0] // first access: this will cause 3

While this initial lookup is fast, you might want to prefetch ToOne or ToMany values

before the query results are returned. To do this call the QueryBuilder.eager method

when building your query and pass the RelationInfo objects associated with the ToOne

and ToMany properties to prefetch:

List<Customer> customers = customerBox.query()1
 .eager(Customer_.orders) // Customer has a ToMany called orders.2
 .build()3
 .find();4
// First access: this will cause a database lookup.5
Order order = customers.get(0).orders.get(0);6

val customers = customerBox.query()1
 .eager(Customer_.orders) // Customer has a ToMany called orders2
 .build()3
 .find()4
customers[0].orders[0] // first access: this will NOT cause a databa5

Eager loading only works one level deep. If you have nested relations and you want to

prefetch relations of all children, you can instead add a query filter as described below. Use

http://objectbox.io/files/objectbox-java/current/io/objectbox/query/QueryBuilder.html#eager-io.objectbox.relation.RelationInfo-io.objectbox.relation.RelationInfo...-

it to simply access all relation properties, which triggers them to lookup there values as

described above.

Query filters

Query filters come into play when you are looking for objects that need to match complex

conditions, which cannot be fully expressed with the QueryBuilder class. Filters are written

in Java and thus can express any complexity. Needless to say that database conditions

can be matched more efficiently than Java based filters. Thus you will get best results

when you use both together:

1. Narrow down results using standard database conditions to a reasonable number (use

QueryBuilder to get “candidates”)

2. Now filter those candidates using the QueryFilter Java interface to identify final results

A QueryFilter implementation looks at one candidate object at a time and returns true if the

candidate is a result or false if not.

Example:

// Reduce object count to reasonable value.1
songBox.query().equal(Song_.bandId, bandId)2
 // Filter is performed on candidate objects.3
 .filter((song) -> song.starCount * 2 > song.downloads);4

Notes on performance: 1) ObjectBox creates objects very fast. 2) The virtual machine is

tuned to garbage collect short lived objects. Notes 1) and 2) combined makes a case for

filtering because ObjectBox creates candidate objects of which some are not used and

thus get garbage collected quickly after their creation.

Query filters and ToMany relation

The ToMany class offers additional methods that can be convenient in query filters:

http://objectbox.io/files/objectbox-java/current/io/objectbox/query/QueryFilter.html

hasA: returns true if one of elements matches the given QueryFilter

hasAll: returns true if all of elements match the given QueryFilter

getById: return the element with the given ID (value of the property with the @Id

annotation)

Data Observers & Rx

ObjectBox - Data Observers and Reactive Extensions

ObjectBox makes it easy for your app to react to data changes by providing:

data observers,

reactive extensions,

and an optional library to work with RxJava.

This makes setting up data flows easy while taking care of threading details.

Reactive Observers: A first Example

 Let’s start with an example to demonstrate what you can do with reactive data observers:

Query<Task> query = taskBox.query().equal(Task_.complete, false).build();1
query.subscribe(subscriptions)2
 .on(AndroidScheduler.mainThread())3
 .observer(data -> updateUi(data));4

The first line creates a regular query to get Task objects where

task.complete == false . The second line connects an observer to the query. This is

what happens:

the query is executed in the background

once the query finishes the observer gets the result data

whenever changes are made to Task objects in the future, the query will be executed

again

once updated query results are in, they are propagated to the observer

the observer is called on Android’s main thread

So it’s just two lines of code – but a lot of stuff happening behind the scenes.

What we did not cover yet is the parameter of the call subscribe(subscriptions) : this is

used to track all the subscriptions so they can be canceled with one call once your app

wants to stop observing.

Now, let’s dive into the details.

Data Observers Basics

When objects change, ObjectBox notifies subscribed data observers. They can either

subscribe to changes of certain object types (via BoxStore) or to query results. To create a

data observer you need to implement the generic io.objectbox.reactive.DataObserver

interface:

public interface DataObserver<T> {1
 void onData(T data);2
}3

This observer will be called by ObjectBox when necessary: typically shortly after

subscribing and when data changes.

 Note: onData() is called asynchronously and decoupled from the thread

causing the data change (like the thread that committed a transaction).

Observing General Changes

BoxStore allows a DataObserver to subscribe to object types. Let’s say we have a to-do

list app where Task objects get added. To get notified when Task objects are added in

another place in our app we can do the following:

DataObserver<Class<Task>> taskObserver = new DataObserver<Class<Task>>() {1

 @Override public void onData(Class<Note> data) {2
 // do something3
 }4
};5
boxStore.subscribe(Task.class).observer(taskObserver);6

Here onData() is not called with anything useful as data. If you need more than being

notified, like to get a list of Task objects following the above example, read on to learn

how to observe queries.

Note: there is also subscribe() which takes no arguments. It subscribes the

observer to receive changes for all available object classes.

Observing Queries

ObjectBox let’s you build queries to find the objects matching certain criteria. Queries are

an essential part of ObjectBox: whenever you need a specific set of data, you will probably

use a query.

Combining queries and observers results in a convenient and powerful tool: query

observers will automatically deliver fresh results whenever changes are made to entities in

a box. Let’s say you display a list of to-do tasks in your app. You can use a DataObserver

to get all tasks that are not yet completed and pass them to a method updateUi() (note

that we are using lambda syntax here):

Query<Task> query = taskBox.query().equal(Task_.completed, false).build();1
subscription = query.subscribe().observer(data -> updateUi(data));2

So when is our observer lambda called? Immediately when an observer is subscribed, the

query will be run in a separate thread. Once the query result is available, it will be passed

to the observer. This is the first call to the observer.

Now let’s say a task gets changed and stored in ObjectBox. It doesn't matter where and

how; it might be the user who marked a task as completed, or some backend thread

putting additional tasks during synchronization with a server. In any case, the query will

notify all observers with (potentially) updated query results.

Note that this pattern can greatly simplify your code: there is a single place where your

data comes in to update your user interface. There is no separate initialization code, no

wiring of events, no re-running queries, etc.

See the subscribe()-method documentation for more details.

Canceling Subscriptions

 When you call observer() , it returns a subscription object implementing the

io.objectbox.reactive.DataSubscription interface:

public interface DataSubscription {1
 void cancel();2
 boolean isCanceled();3
}4

 So, if you plan to unsubscribe your DataObserver later, it is a good idea to hold on to

the DataSubscription . Call cancel() on it to let ObjectBox know that the observer

should not be notified anymore:

DataSubscription subscription = boxStore.subscribe().observer(myObserver);1
2

// At some later point:3
subscription.cancel();4

 Because you often have more than one query subscription, we generally recommend

using DataSubscriptionList instead of keeping track of potentially multiple

DataSubscription objects. The basic pattern goes like this:

http://objectbox.io/files/objectbox-java/current/io/objectbox/query/Query.html#subscribe--

private DataSubscriptionList subscriptions = new DataSubscriptionList();1
2

protected void onStart() {3
 super.onStart();4
 Query<X> query = box.query()... .build();5
 query.subscribe(subscriptions)... .observe(...);6
}7

8
protected void onStop() {9
 super.onStop();10
 subscriptions.cancel();11
}12

 Note: On Android, you would typically create the subscription in one of the

onCreate()/onStart()/onResume() lifecycle methods and cancel it in its

counterpart onDestroy()/onStop()/onPause() .

Observers and Transactions

 Observer notifications occur after a transaction is committed. For some scenarios it is

especially important to know transaction bounds. If you call box.put() or remove()

individually, an implicit transaction is started and committed. For example, this code

fragment would trigger data observers on User.class twice:

box.put(friendUser);1
box.put(myUser);2

 There are several ways to combine several operations into one transaction, for example

using one of the runInTx() or callInTx() methods in the BoxStore class. For our

simple example, we can simply use an overload of put() accepting multiple objects:

box.put(friendUser, myUser);

 This results in a single transaction and thus in a single DataObserver notification.

Reactive Extensions

 In the first part you saw how data observers can help you keep your app state up to date.

But there is more: ObjectBox comes with simple and convenient reactive extensions for

typical tasks. While most of these are inspired by RxJava, they are not actually based on

RxJava. ObjectBox brings its own features because not all developers are familiar with

RxJava (for the RxJava ObjectBox library see below). We do not want to impose the

complexity (Rx is almost like a new language to learn) and size of RxJava (~10k methods)

on everyone. So, let’s keep it simple and neat for now.

Thread Scheduling

 On Android, UI updates must occur on the main thread only. Luckily, ObjectBox allows to

switch the observer from a background thread over to the main thread. Let’s take a look on

a revised version of the to-do task example from above:

Query<Task> query = taskBox.query().equal(Task_.complete, false).build();1
query.subscribe().on(AndroidScheduler.mainThread()).observer(data -> updat2

 Where is the difference? The additional on() call is all that is needed to tell where we

want our observer to be called. AndroidScheduler.mainThread() is a built-in scheduler

implementation. Alternatively, you can create an AndroidScheduler using a custom

Looper , or build a fully custom scheduler by implementing the

io.objectbox.reactive.Scheduler interface.

Transforming Data

 Maybe you want to transform the data before you hand it over to an observer. Let’s say,

you want to keep track of the count of all stored objects for each type. The BoxStore

subscription gives you the classes of the objects, and this example shows you how to

transform them into actual object counts:

boxStore.subscribe()1
 .transform(clazz -> return boxStore.boxFor(clazz).count())2
 .observer(count -> updateCount(count));3

Note that the transform operation takes a Class object and returns a Long number.

Thus the DataObserver receives the object count as a Long parameter in onData() .

While the lambda syntax is nice and brief, let’s look at the

io.objectbox.reactive.Transformer interface for clarification of what the transform()

method expects as a parameter:

public interface DataTransformer<FROM, TO> {1
 TO transform(FROM source) throws Exception;2
}3

Some additional notes on transformers:

Transforms are not required to actually “transform” any data. Technically, it is fine to

return the same data that is received and just do some processing with (or without) it.

Transformers are always executed asynchronously. It is fine to perform long lasting

operations.

ErrorObserver

 Maybe you noticed that a transformer may throw any type of exception. Also, a

DataObserver might throw a RuntimeException . In both cases, you can provide an

ErrorObserver to be notified about an exception that occurred. The

io.objectbox.reactive.ErrorObserver is straight-forward:

public interface ErrorObserver {1
 void onError(Throwable th);2
}3

To specify your ErrorObserver , simply call the onError() method after subscribe() .

Single Notifications vs. Only-Changes

When you subscribe to a query, the DataObserver gets both of the following by default:

Initial query results (right after subscribing)

Updated query results (underlying data was changed)

Sometimes you may by interested in only one of those. This is what the methods

single() and onlyChanges() are for (call them after subscribe()). Single

subscriptions are special in the way that they are cancelled automatically once the

observer is notified. You can still cancel them manually to ensure no call to the observer is

made at a certain point.

Weak References

Sometimes it may be nice to have a weak reference to a data observer. Note that for the

sake of a deterministic flow, it is advisable to cancel subscriptions explicitly whenever

possible. If that does not scare you off, use weak() after subscribe() .

Threading overview

To summarize threading as discussed earlier:

Query execution runs on a background thread (exclusive for this task)

DataTransformer runs on a background thread (exclusive for this task)

DataObserver and ErrorObserver run on a background thread unless a scheduler

is specified via the on() method.

ObjectBox RxJava Extension Library

By design, there are zero dependencies on any Rx libraries in the core of ObjectBox. As

you saw before ObjectBox gives you simple means to transform data, asynchronous

processing, thread scheduling, and one time (single) notifications. However, you still might

want to integrate with the mighty RxJava 2 (we have no plans to support RxJava 1). For

this purpose we created the ObjectBox RxJava extension library:

implementation "io.objectbox:objectbox-rxjava:$objectboxVersion"

It provides the classes RxQuery and RxBoxStore . Both offer static methods to subscribe

using RxJava means.

For general object changes, you can use RxBoxStore to create an Observable .

RxQuery allows to subscribe to query objects using:

Flowable

Observable

Single

Example usage:

Query query = box.query().build();1
RxQuery.observable(query).subscribe(this);2

 The extension library is open-source and available GitHub.

https://github.com/objectbox/objectbox-java/tree/master/objectbox-rxjava

Relations

To-One Relations

ObjectBox - Relations

 Prefer to dive right into code? Check the relation project in the example repo.

Objects may reference other objects, for example using a simple reference or a list of

objects. In database terms, we call those references relations. The object defining the

relation we call the source object, the referenced object we call target object. So the

relation has a direction.

If there is one target object, we call the relation to-one. And if there can be multiple target

objects, we call it to-many. Relations are lazily initialized: the actual target objects are

fetched from the database when they are first accessed. Once the target objects are

fetched, they are cached for further accesses.

To-One Relations

You define a to-one relation using the ToOne class, a smart proxy to the target object. It

gets and caches the target object transparently. For example, an order is typically made by

one customer. Thus, we could model the Order class to have a to-one relation to the

Customer like this:

https://github.com/objectbox/objectbox-examples/

Java

Kotlin

// Customer.java1
@Entity2
public class Customer {3
 4
 @Id public long id;5
 6
}7

8
// Order.java9
@Entity10
public class Order {11
 12
 @Id public long id;13
 14
 public ToOne<Customer> customer;15
 16
}17

@Entity1
data class Customer(2
 @Id var id: Long = 03
)4

5
@Entity6
data class Order(7
 @Id var id: Long = 08
) {9
 lateinit var customer: ToOne<Customer>10
}11

Now let’s add a customer and some orders. To set the related customer object, call

setTarget() (or assign target in Kotlin) on the ToOne instance and put the order

object:

Java

Kotlin

Customer customer = new Customer();1
Order order = new Order();2
order.customer.setTarget(customer);3
// Puts order and customer:4
long orderId = boxStore.boxFor(Order.class).put(order);5

val customer = Customer()1
val order = Order()2
order.customer.target = customer3
// Puts order and customer:4
val orderId = boxStore.boxFor(Order::class.java).put(order)5

If the customer object does not yet exist in the database, the ToOne will put it. If it already

exists, the ToOne will only create the relation (but not put it). See further below for details
about updating relations.

Note: if your related entity uses self-assigned IDs with

@Id(assignable = true) it will not be inserted. See below about updating

ToOne for details.

To get the customer of an order call getTarget() (or access target in Kotlin) on the

ToOne instance:

Java

Kotlin

Java

Kotlin

Order order = boxStore.boxFor(Order.class).get(orderId);1
Customer customer = order.customer.getTarget();2

val order = boxStore.boxFor(Order::class.java)[orderId]1
val customer = order.customer.target2

This will do a database call on the first access (lazy loading). It uses lookup by ID, which is

very fast in ObjectBox. If you only need the ID instead of the whole target object, call

getTargetId() instead. It can be more efficient because it does not touch the database

at all.

We can also remove the relationship to a customer:

order.customer.setTarget(null);1
boxStore.boxFor(Order.class).put(order);2

order.customer.target = null1
boxStore.boxFor(Order::class.java).put(order)2

Java

Kotlin

Note that this does not remove the customer from the database, it just dissolves the

relationship.

How ToOne works behind the scenes

If you look at your model in objectbox-models/default.json you can see, a ToOne

property is not actually stored. Instead the ID of the target object is saved in a virtual

property named like the ToOne property appended with Id.

Expose the ToOne target ID property

You can directly access the target ID property by defining a long (or Long in Kotlin)

property in your entity class with the expected name:

@Entity1
public class Order {2
 @Id public long id;3
 4
 public long customerId; // ToOne target ID property5
 public ToOne<Customer> customer;6
}7

@Entity1
data class Order(2
 @Id var id: Long = 0,3
 var customerId: Long = 04
) {5
 lateinit var customer: ToOne<Customer>6
}7

You can change the name of the expected target ID property by adding the

@TargetIdProperty(String) annotation to a ToOne.

Initialization Magic

Did you notice that the ToOne field customer was never initialized in the code example

above? Why can the code still use customer without any NullPointerException? Because

the field actually is initialized – the initialization code just is not visible in your sources.

The ObjectBox Gradle plugin will transform your entity class (only supported for plain
Java and Android projects) to do the proper initialization in constructors before your code

is executed. Thus, even in your constructor code, you can just assume ToOne and

ToMany / List properties have been initialized and are ready for you to use:

@Entity1
public class Example {2
 3
 ToOne<Order> order; 4
 ToMany<Order> orders;5
 6
 transient BoxStore __boxStore; // <-- Transform adds this field7
 8
 public Example() {9
 // Transform inits ToOne and ToMany in constructors 10
 // not calling another constructor11
 this.order = new ToOne<>(this, Example_.order);12
 this.orders = new ToMany<>(this, Example_.orders);13
 }14
 15
 public Example(String value) {16
 this();17
 // Calls another constructor, so Transform does not add init18
 }19
 20
}21

http://objectbox.io/files/objectbox-java/current/io/objectbox/annotation/TargetIdProperty.html

If your setup does not support transformations, like non-Android Kotlin code,

add the above modifications yourself. You also will have to call

box.attach(entity) before modifying ToOne or ToMany properties.

Improve Performance

To improve performance when ObjectBox constructs your entities, you should provide an
all-properties constructor.

For a ToOne you have to add an id parameter, typically named like the ToOne field

appended with Id . Check your objectbox-models/default.json file to find the correct

name.

An example:

@Entity1
public class Order {2
 3
 @Id public long id;4
 5
 public ToOne<Customer> customer;6
 7
 public Order() { /* default constructor */ }8
 9
 public Order(long id, long customerId /* virtual ToOne id property */)10
 this.id = id;11
 this.customer.setTargetId(customerId);12
 }13
 14
}15

To-Many Relations

One-to-Many (1:N)

To define a to-many relation, you can use a property of type List or the ToMany class.

As the ToOne class, the ToMany class helps you to keep track of changes and to apply

them to the database. If you do not need or want that, use type List and take care of

applying database changes yourself.

Note that to-many relations are resolved lazily on first access, and then cached in the

source entity inside the ToMany object. So subsequent calls to any method, like size()

of the ToMany , do not query the database, even if the relation was changed elsewhere. To

get the latest data fetch the source entity again or call reset() on the ToMany .

There is a slight difference if you require a one-to-many (1:N) or many-to-many (N:M)

relation. A 1:N relation is like the example above where a customer can have multiple

orders, but an order is only associated with a single customer. An example for an N:M

relation are students and teachers: students can have classes by several teachers but a

teacher can also instruct several students.

One-to-Many (1:N)

To define a one-to-many relation, you need to annotate your relation property with

@Backlink. It links back to a to-one relation in the target object. Using the customer and

orders example, we can modify the customer class to have a to-many relation to the

customers orders:

Java

// Customer.java1
@Entity2
public class Customer {3
 4
 @Id public long id;5
 6
 // 'to' is optional if only one relation matches.7
 @Backlink(to = "customer")8
 public ToMany<Order> orders;9
 10
}11

12
// Order.java13
@Entity14
public class Order {15
 16
 @Id public long id;17
 18
 public ToOne<Customer> customer;19
 20
}21

Kotlin

Java

@Entity1
data class Customer(2
 @Id var id: Long = 03
) { 4
 // 'to' is optional if only one relation matches.5
 @Backlink(to = "customer")6
 lateinit var orders: ToMany<Order>7
}8

9
@Entity10
data class Order(11
 @Id var id: Long = 012
) {13
 lateinit var customer: ToOne<Customer>14
}15

The @Backlink annotation tells ObjectBox which ToOne relation to use to populate the

list of orders. If there would be multiple to-one relations using Customer inside the

Order class, you would need to explicitly specify the name like

@Backlink(to = "customer") .

Let’s add some orders together with a new customer. The ToMany implements the Java

List interface, so we can simply add orders to it:

Customer customer = new Customer();1
customer.orders.add(new Order("Order 1"));2
customer.orders.add(new Order("Order 2"));3
// Puts customer and orders:4
long customerId = boxStore.boxFor(Customer.class).put(customer);5

Kotlin

val customer = Customer()1
customer.orders.add(Order(text = "Order 1"))2
customer.orders.add(Order(text = "Order 2"))3
// Puts customer and orders:4
val customerId = boxStore.boxFor(Customer::class.java).put(customer)5

For Kotlin: two data classes that have the same property values (excluding

those defined in the class body) are equal and have the same hash code. Keep

this in mind when working with ToMany which uses a HashMap to keep track of

changes. E.g. adding the same data class multiple times has no effect, it is

treated as the same entity.

If the order entities do not yet exist in the database, the ToMany will put them. If they

already exist, the ToMany will only create the relation (but not put them). See further below

for details about updating relations.

Note: if your entities use self-assigned IDs with @Id(assignable = true) the

above will not work. See below about updating ToMany for details.

We can easily get the orders of a customer back by accessing the list of orders:

https://kotlinlang.org/docs/reference/data-classes.html

Java

Kotlin

Java

Customer customer = boxStore.boxFor(Customer.class).get(customerId);1
for (Order order : customer.orders) {2
 // Do something with each order.3
}4

val customer = boxStore.boxFor(Customer::class.java).get(customerId)1
for (order in customer.orders) {2
 // Do something with each order.3
}4

Removing orders from the relation works as expected:

// Remove the relation to an order:1
Order order = customer.orders.remove(0);2
boxStore.boxFor(Customer.class).put(customer);3
// Optional: also remove the order entity from its box:4
// boxStore.boxFor(Order.class).remove(order);5

Kotlin

Many-to-Many (N:M)

// Remove the relation to an order:1
val order = customer.orders.removeAt(0)2
boxStore.boxFor(Customer::class.java).put(customer)3
// Optional: also remove the order entity from its box:4
// boxStore.boxFor(Order::class.java).remove(order)5

Many-to-Many (N:M)

To define a many-to-many relation you simply add a property using the ToMany class.

Assuming a students and teachers example, this is how a simple student class that has a

to-many relation to teachers can look like:

Java

Kotlin

// Teacher.java1
@Entity2
public class Teacher{3
 4
 @Id public long id;5
 6
}7

8
// Student.java9
@Entity10
public class Student{11
 12
 @Id public long id;13
 14
 public ToMany<Teacher> teachers;15
 16
}17

@Entity1
data class Teacher(2
 @Id var id: Long = 03
)4

5
@Entity6
data class Student(7
 @Id var id: Long = 08
) {9
 lateinit var teachers: ToMany<Teacher>10
}11

Adding the teachers of a student works exactly like with a list:

Java

Kotlin

Teacher teacher1 = new Teacher();1
Teacher teacher2 = new Teacher();2

3
Student student1 = new Student();4
student1.teachers.add(teacher1);5
student1.teachers.add(teacher2);6

7
Student student2 = new Student();8
student2.teachers.add(teacher2);9

10
// Puts students and teachers:11
boxStore.boxFor(Student.class).put(student1, student2);12

val teacher1 = Teacher()1
val teacher2 = Teacher()2

3
val student1 = Student()4
student1.teachers.add(teacher1)5
student1.teachers.add(teacher2)6

7
val student2 = Student()8
student2.teachers.add(teacher2)9

10
// Puts students and teachers:11
boxStore.boxFor(Student::class.java).put(student1, student2)12

If the teacher entities do not yet exist in the database, the ToMany will also put them. If

they already exist, the ToMany will only create the relation (but not put them). See further

below for details about updating relations.

Note: if your entities use self-assigned IDs with @Id(assignable = true) the

above will not work. See below about updating ToMany for details.

Java

Kotlin

Java

To get the teachers of a student we just access the list:

Student student = boxStore.boxFor(Student.class).get(studentId);1
for (Teacher teacher : student.teachers) {2
 // Do something with each teacher.3
}4

val student = boxStore.boxFor(Student::class.java).get(studentId)1
for (teacher in student.teachers) {2
 // Do something with each teacher.3
}4

And if a student drops out of a class, we can remove a teacher from the relation:

student.teachers.remove(0);1
// Simply put the student again:2
// boxStore.boxFor(Student.class).put(student);3
// Or more efficient than using put:4
student.teachers.applyChangesToDb();5

Kotlin

student.teachers.removeAt(0)1
// Simply put the student again:2
// boxStore.boxFor(Student::class.java).put(student)3
// Or more efficient than using put:4
student.teachers.applyChangesToDb()5

Note: instead of using put() you can also use applyChangesToDb() of the

ToMany to persist changes that affect it only.

Access Many-To-Many in the reverse direction

Since 2.0.0

Following the above example, you might want an easy way to find out what students a

teacher has. Instead of having to perform a query, you can just add a to-many relation to

the teacher and annotate it with the @Backlink annotation:

Java

// Teacher.java1
@Entity2
public class Teacher{3
 4
 @Id public long id;5
 6
 // Backed by the to-many relation in Student:7
 @Backlink(to = "teachers")8
 public ToMany<Student> students;9
 10
}11

12
// Student.java13
@Entity14
public class Student{15
 16
 @Id public long id;17
 18
 public ToMany<Teacher> teachers;19
 20
}21

Kotlin

@Entity1
data class Teacher(2
 @Id var id: Long = 03
) {4
 // Backed by the to-many relation in Student:5
 @Backlink(to = "teachers")6
 lateinit var students: ToMany<Student>7
}8

9
@Entity10
data class Student(11
 @Id var id: Long = 012
) {13
 lateinit var teachers: ToMany<Teacher>14
}15

Updating Relations

The ToOne and ToMany classes assist you to persist the relation state. They keep track of

changes and apply them to the database once you put the entity owning the relation.

ObjectBox supports relation updates for new (not yet persisted; ID == 0) and existing

(persisted before; ID != 0) entities.

For convenience, ToOne and ToMany will put related entities if they do not yet exist (ID ==

0). If they already exist (their ID != 0, or you are using @Id(assignable = true)), only

the relation will be created or destroyed. In that case, to put changes to the properties of

related entities use their specific Box instead:

// update a related entity using its box1
Order orderToUpdate = customer.orders.get(0);2
orderToUpdate.text = "Revised description";3
// DOES NOT WORK4
// boxStore.boxFor(Customer.class).put(customer);5
// WORKS6

boxStore.boxFor(Order.class).put(orderToUpdate);7

Updating ToOne

The ToOne class offers the following methods to update the relation:

setTarget(entity) makes the given entity (new or existing) the new relation target;

pass null to clear the relation

setTargetId(entityId) sets the relation to the given ID of an existing target entity;

pass 0 (zero) to clear the relation

setAndPutTarget(entity) makes the given entity (new or existing) the new relation

target and puts the enclosing entity and if needed the target entity.

order.customer.setTarget(customer); // or order.customer.setCustomerId(cus1
orderBox.put(order);2

Note: if your entity was not put yet before calling setAndPutTarget() you

need to attach its box first:

Order order = new Order(); // new entity1
orderBox.attach(order); // need to attach box first2
order.customer.setAndPutTarget(customer);3

Note: if you are using self-assigned IDs with @Id(assignable = true) a new

target entity will not be stored when storing the parent. Read on for details:

If your target entity uses self-assigned IDs, you have to store it before updating the ToOne

relation:

customer.id = 12; // self-assigned id1
customerBox.put(customer); // need to put customer first2
order.customer.setTarget(customer); // or order.customer.setCustomerId(cus3
orderBox.put(order);4

This is because ObjectBox only puts related entities with an ID of 0. See the

documentation about IDs for background information.

Updating ToMany

The ToMany class implements the java.lang.List interface while adding change

tracking for entities. If you add entities to an ToMany object, those are scheduled to be put

in the database. Similarily, if you remove entities from the ToMany object, those are also

scheduled to be put. Note that removing entities from the List does not actually remove the

entity from the database; just the relation is cleared. Do not forget to put the owning entity

to apply changes tracked by ToMany objects to the database.

customer.orders.add(order1);1
customer.orders.remove(order2);2
customerBox.put(customer);3

Note: if you are using self-assigned IDs with @Id(assignable = true) the

above will not work. Read on for details:

If your parent entity uses @Id(assignable = true) you need to attach its box before

modifying its ToManys:

customer.id = 12; // self-assigned id1
customerBox.attach(customer); // need to attach box first2
customer.orders.add(order);3
customerBox.put(customer);4

Java

If your related entity, like Order above, is using self-assigned IDs you need to put the

related entities yourself before adding them to a relation:

order.id = 42; // self-assigned id1
orderBox.put(order); // need to put order first2
customer.orders.add(order);3
customerBox.put(customer); // put customer, add relation to order4

In this case, when putting the parent entity only the relation is updated. This is because

ObjectBox only puts related entities with an ID of 0. See the documentation about IDs

for background information.

Example: Modelling Tree Relations

You can model a tree relation with a to-one and a to-many relation pointing to itself:

@Entity1
public class TreeNode {2
 @Id long id;3
 4
 ToOne<TreeNode> parent;5
 6
 @BackLink7
 ToMany<TreeNode> children;8
}9

Kotlin

Java

Kotlin

@Entity1
data class TreeNode(2
 @Id var id: Long = 03
) {4
 lateinit var parent: ToOne<TreeNode>5
 6
 @Backlink7
 lateinit var children: ToMany<TreeNode>8
}9

The generated entity lets you navigate its parent and children:

TreeNode parent = entity.parent.getTarget();1
List<TreeNode> children = entity.children;2

val parent: TreeNode = entity.parent.target1
val children: List<TreeNode> = entity.children2

Data Browser

ObjectBox - Data Brower

ObjectBox - Data Browser

The ObjectBox data browser (object browser) allows you to

view the entities and schema of your database inside a regular web browser,

and download entities in JSON format.

The object browser runs directly on your device or on your development machine. Behind

the scenes this works by bundling a simple HTTP browser into ObjectBox when building

your app. If triggered, it will then provide a basic web interface to the data and schema in

your box store.

Setup

We strongly recommend to use the object browser only for debug builds.

Add the objectbox-android-objectbrowser library to your debug configuration, and the

objectbox-android library to your release configuration. Make sure to also apply the

“io.objectbox” plugin after the dependencies block:

dependencies {1
 debugImplementation "io.objectbox:objectbox-android-objectbrowser:$obj2
 releaseImplementation "io.objectbox:objectbox-android:$objectboxVersio3
}4

5
// apply the plugin after the dependencies block6
apply plugin: 'io.objectbox'7

Otherwise the build will fail with a duplicate files error (like

Duplicate files copied in APK lib/armeabi-v7a/libobjectbox.so) because the

ObjectBox plugin will add the objectbox-android library again.

The objectbox-android-objectbrowser artifact adds required permissions to your

AndroidManifest.xml (since version 2.2.0). The permissions added are:

<!-- Required to provide the web interface -->1
<uses-permission android:name="android.permission.INTERNET" />2
<!-- Required to run keep-alive service when targeting API 28 or higher --3
<uses-permission android:name="android.permission.FOREGROUND_SERVICE"/>4

If you only use the browser library for debug builds as recommended above, they will not

be added to your release build.

After creating your BoxStore , start the object browser using an AndroidObjectBrowser

instance. Typically in the onCreate() method of your Application class:

boxStore = MyObjectBox.builder().androidContext(this).build();1
if (BuildConfig.DEBUG) {2
 boolean started = new AndroidObjectBrowser(boxStore).start(this);3
 Log.i("ObjectBrowser", "Started: " + started);4
}5

Browse data on your device

When the app starts an object browser notification should appear. Tapping it will launch a

service to keep the app alive and opens the data browser interface in the web browser on

the device.

To stop the service keeping your app alive, tap the ‘Stop’ button in the notification.

Browse data on your dev machine

To open the browser website on your development machine check the Logcat output when

launching the app. It will print the port and the ADB command needed to forward the port

to your machine:

I/ObjectBrowser: ObjectBrowser started: http://localhost:8090/index.html1
I/ObjectBrowser: Command to forward ObjectBrowser to connected host: adb f2

If available, port 8090 is used by default. So in most cases just run this command on your

dev machine:

adb forward tcp:8090 tcp:8090

Once the port is forwarded you can open a browser and go to

http://localhost:8090/index.html .

Download entities

Download entities

When viewing entities tap the download button at the very bottom. This will download

entities formatted as JSON.

Transactions

ObjectBox - Transactions

ObjectBox is a fully transactional database satisfying ACID properties. A transaction can

group several operations into a single unit of work that either executes completely or not at

all. If you are looking for a more detailed introduction to transactions in general, please

consult other resources like Wikipedia on database transactions. For ObjectBox

transactions continue reading:

You may not notice it, but almost all interactions with ObjectBox involve transactions. For

example, if you call put a write transaction is used. Also if you get an object or query

for objects, a read transaction is used. All of this is done under the hood and transparent to

you. It may be fine to completely ignore transactions altogether in your app without running

into any problems. With more complex apps however, it’s usually worth learning

transaction basics to make your app more consistent and efficient.

Explicit transactions

We learned that all ObjectBox operations run in implicit transactions – unless an explicit

transaction is in progress. In the latter case, multiple operations share the (explicit)

transaction. In other words, with explicit transactions you control the transaction boundary.

Doing so can greatly improve efficiency and consistency in your app.

The class BoxStore offers the following methods to perform explicit transactions:

runInTx: Runs the given runnable inside a transaction.

runInReadTx: Runs the given runnable inside a read(-only) transaction. Unlike write

transactions, multiple read transactions can run at the same time.

runInTxAsync: Runs the given Runnable as a transaction in a separate thread. Once

the transaction completes the given callback is called (callback may be null).

callInTx: Like runInTx(Runnable), but allows returning a value and throwing an

exception.

https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Database_transaction
http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStore.html

The advantage of explicit transactions over the bulk put operations is that you can perform

any number of operations and use objects of multiple boxes. In addition, you get a

consistent (transactional) view on your data while the transaction is in progress.

Example for a write transaction:

boxStore.runInTx(() -> {1
 for(User user: allUsers) {2
 if(modify(user)) box.put(user);3
 else box.remove(user);4
 }5
});6

Transaction costs

Understanding transactions is essential to master database performance. If you just

remember one sentence on this topic, it should be this one: a write transaction has its

price.

Committing a transaction involves syncing data to the physical storage, which is a

relatively expensive operation for databases. Only when the file system confirms that all

data has been stored in a durable manner (not just memory cached), the transaction can

be considered successful. This file sync required by a transaction may take a couple of

milliseconds. Keep this in mind and try to group several operations (e.g. put calls) in one

transaction.

Consider this example:

for(User user: allUsers) {1
 modify(user); // modifies properties of given user2
 box.put(user);3
}4

Do you see what’s wrong with that code? There is an implicit transaction for each user

which is very inefficient, especially for a high number of objects. It is much more efficient to

use one of the put overloads to store all users at once:

for(User user: allUsers) {1
 modify(user); // modifies properties of given user2
}3
box.put(allUsers);4

Much better! If you have 1,000 users, the latter example uses a single transaction to store

all users. The first code example uses 1,000 (!) implicit transactions, causing a massive

slow down.

Read Transactions

In ObjectBox, read transactions are cheap. In contrast to write transactions, there is no

commit and thus no expensive sync to the file system. Operations like get , count , and

queries run inside an implicit read transaction if they are not called when already inside an

explicit transaction (read or write). Note that it is illegal to put when inside a read

transaction: an exception will be thrown.

While read transactions are much cheaper than write transactions, there is still some

overhead to starting a read transaction. Thus, for a high number of reads (e.g. hundreds, in

a loop), you can improve performance by grouping those reads in a single read transaction

(see explicit transactions below).

Multiversion concurrency

ObjectBox gives developers Multiversion concurrency control (MVCC) semantics. This

allows multiple concurrent readers (read transactions) which can execute immediately

without blocking or waiting. This is guaranteed by storing multiple versions of (committed)

https://en.wikipedia.org/wiki/Multiversion_concurrency_control

data. Even if a write transaction is in progress, a read transaction can read the last

consistent state immediately. Write transactions are executed sequentially to ensure a

consistent state. Thus, it is advised to keep write transactions short to avoid blocking other

pending write transactions. For example, it is usually a bad idea to do networking or

complex calculations while inside a write transaction. Instead, do any expensive operation

and prepare objects before entering a write transaction.

Note that you do not have to worry about making write transactions sequential yourself. If

multiple threads want to write at the same time (e.g. via put or runInTx), one of the

threads will be selected to go first, while the other threads have to wait. It works just like a

lock or synchronized in Java.

Locking inside a Write Transaction

Avoid locking (e.g. via synchronized or java.util.concurrent.locks) when inside a

write transaction when possible. Because write transactions run exclusively, they

effectively acquire a write lock internally. As with all locks, you need to pay close attention

when multiple locks are involved. Always obtain locks in the same order to avoid

deadlocks. If you acquire a lock “X” inside a transaction, you must ensure that your code

does not start another write transaction while having the lock “X”.

Advanced

Advanced Setup

ObjectBox - Advanced Setup

First, add and apply the ObjectBox plugin to your project.

To then change the default behavior of the ObjectBox plugin and processor read on for

advanced setup options.

Manually Add Libraries

If the ObjectBox plugin does not automatically add the required library and annotation

processor to your dependencies, you can add them manually. In your app’s

build.gradle file, add the objectbox-android library and the objectbox-processor

annotation processor.

For Android projects using Java:

dependencies {1
 // all below should be added automatically by the plugin2
 compile "io.objectbox:objectbox-android:$objectboxVersion"3
 annotationProcessor "io.objectbox:objectbox-processor:$objectboxVersio4
}5

 For Android projects using Kotlin:

dependencies {1
 // all below should be added automatically by the plugin2
 compile "io.objectbox:objectbox-android:$objectboxVersion"3
 kapt "io.objectbox:objectbox-processor:$objectboxVersion"4
 // some useful Kotlin extension functions5
 compile "io.objectbox:objectbox-kotlin:$objectboxVersion" 6
}7

Change the Model File Path

By default the ObjectBox model file is stored in

module-name/objectbox-models/default.json . You can change the file path and name

by passing the objectbox.modelPath argument to the ObjectBox annotation processor.

In your app’s build.gradle file, add the necessary processor option.

For Android projects using Java:

android {1
 defaultConfig {2
 javaCompileOptions {3
 annotationProcessorOptions {4
 arguments = ["objectbox.modelPath" : "$projectDir/schemas5
 }6
 }7
 }8
}9

 For Android projects using Kotlin:

kapt {1
 arguments {2
 arg("objectbox.modelPath", "$projectDir/schemas/objectbox.json")3
 }4
}5

Change the MyObjectBox package

Since 1.5.0

By default the MyObjectBox class is generated in the same or a parent package of your

entity classes. You can define a specific package by passing the

objectbox.myObjectBoxPackage argument to the ObjectBox annotation processor.

In your app’s build.gradle file, add the necessary processor option.

For Android projects using Java:

android {1
 defaultConfig {2
 javaCompileOptions {3
 annotationProcessorOptions {4
 arguments = ["objectbox.myObjectBoxPackage" : "com.exampl5
 }6
 }7
 }8
}9

 For Android projects using Kotlin:

kapt {1
 arguments {2
 arg("objectbox.myObjectBoxPackage", "com.example.custom")3
 }4
}5

Enable Debug Mode

You can enable debug output for the annotation processor if you encounter issues while

setting up your project and entity classes.

In your app’s build.gradle file, add the necessary options and then run Gradle with the -

-info option to see the debug output.

For Android projects using Java:

android {1
 defaultConfig {2
 javaCompileOptions {3
 annotationProcessorOptions {4
 arguments = ['objectbox.debug' : 'true']5
 }6
 }7
 }8
}9

 For Android projects using Kotlin:

kapt {1
 arguments {2
 arg("objectbox.debug", true)3
 }4
}5

Enable DaoCompat mode

ObjectBox can help you migrate from greenDAO by generating classes with a greenDAO-

like API.

See the DaoCompat documentation on how to enable and use this feature.

Next steps

Tips when using Kotlin

http://greenrobot.org/greendao/documentation/objectbox-compat/

Kotlin Support /kotlin-support

Object IDs

ObjectBox - Object IDs

Objects must have an ID property of type long . You are free to use the wrapper type

java.lang.Long , but we advise against it in most cases. long IDs are enforced to make

ObjectBox very efficient internally.

If your application requires other ID types (such as a string UID given by a server), you can

model them as standard properties and use queries to look up entities by your application

specific ID.

Object ID: new vs. persisted entities

When you create new entity objects (on the language level), they are not persisted yet and

their ID is (zero). Once an entity is put (persisted), ObjectBox will assign an ID to the entity.

You can access the ID property right after the call to put() .

Those are also applied the other way round: ObjectBox uses the ID as a state indication

whether an entity is new (zero) or already persisted (non-zero). This is used internally, e.g.

for relations which heavily rely on IDs.

Special Object IDs

Object IDs may be any long value, with two exceptions:

0 (zero): Objects with an ID of zero (and null if the ID is of type Long) are

considered new (not persisted before). Putting such an object will always insert a new

object and assign an unused ID to it.

0xFFFFFFFFFFFFFFFF (-1 in Java): This value is reserved for internal use by

ObjectBox and may not be used by the app.

Object ID assignment (default)

By default object IDs are assigned by ObjectBox. For each new object, ObjectBox will

assign an unused ID that is above the current highest ID value used in a box. For example,

if there are two objects with ID 1 and ID 100 in a box the next object that is put will be

assigned ID 101.

By default, only ObjectBox may assign IDs. If you try to put an object with an ID greater

than the currently highest ID, ObjectBox will throw an error.

Self-assigned Object IDs

If you need to assign IDs by yourself you can change the ID annotation to:

@Id(assignable = true)1
long id;2

This will allow putting an entity with any valid ID. You can still set the ID to zero to let

ObjectBox auto assign a new ID.

Warning: self-assigned IDs break automatic state detection (new vs. persisted

entity based on the ID). Therefore, you should put entities with self-assigned
IDs immediately and may have to attach the box manually, especially when

working with relations.

For details see the documentation about updating relations.

String ID alias (future work)

 Check this issue on Github for status.

https://github.com/objectbox/objectbox-java/issues/167

Custom Types

Java

ObjectBox - Supported Types

With ObjectBox you can store pretty much any type (class), given that it can be converted

to any of the built-in types.

ObjectBox can store the following built-in types without a converter:

boolean, Boolean1
int, Integer2
short, Short3
long, Long4
float, Float5
double, Double6
byte, Byte7
char, Character8
byte[]9
String10
Date // Time with millisecond precision.11

12
// As of 3.0.0-alpha2 the following work out of the box:13
String[]14
@Type(DateNano) long, Long // Time with nanosecond precision.15

Kotlin

Boolean, Boolean?1
Int, Int?2
Short, Short?3
Long, Long?4
Float, Float?5
Double, Double?6
Byte, Byte?7
Char, Char?8
ByteArray9
String, String?10
Date, Date? // Time with millisecond precision.11

12
// As of 3.0.0-alpha2 the following work out of the box:13
Array<String>14
@Type(DateNano) Long, Long? // Time with nanosecond precision.15

To store any other type, configure a converter like shown below.

Convert annotation and property converter

To add support for a custom type, you can map properties to one of the built-in types using

a @Convert annotation. You also need to provide a PropertyConverter implementation.

For example, you could define a color in your entity using a custom Color class and map

it to an Integer . Or you can map the popular org.joda.time.DateTime from Joda Time

to a Long .

Here is an example mapping an enum to an Integer :

@Entity1
public class User {2
 @Id3
 private Long id;4

 5
 @Convert(converter = RoleConverter.class, dbType = Integer.class)6
 private Role role;7
 8
 public enum Role {9
 DEFAULT(0), AUTHOR(1), ADMIN(2);10
 11
 final int id;12
 13
 Role(int id) {14
 this.id = id;15
 }16
 }17

18
 public static class RoleConverter implements PropertyConverter<Role, I19
 @Override20
 public Role convertToEntityProperty(Integer databaseValue) {21
 if (databaseValue == null) {22
 return null;23
 }24
 for (Role role : Role.values()) {25
 if (role.id == databaseValue) {26
 return role;27
 }28
 }29
 return Role.DEFAULT;30
 }31
 32
 @Override33
 public Integer convertToDatabaseValue(Role entityProperty) {34
 return entityProperty == null ? null : entityProperty.id;35
 }36
 }37
}38

Things to look out for

If you define your custom type or converter inside your entity class, they have to be

static.

Don’t forget to handle null values correctly – usually you should return null if the input is

null.

Database types in the sense of the converter are the primitive Java types offered by

ObjectBox, as mentioned in the beginning. It is recommended to use a primitive type that

is easily convertible (int, long, byte array, String, …).

You must not interact with the database (such as using Box or BoxStore) inside the

converter. The converter methods are called within a transaction, so for example getting or

putting entities to a box will fail.

Note: For optimal performance, ObjectBox will use a single converter
instance for all conversions. Make sure the converter does not have any other

constructor besides the parameter-less default constructor. Also, make it thread

safe, because it might be called concurrently on multiple entities.

List/Array types

You can use a converter with List types. For example, you could convert a List of Strings to

a JSON array resulting in a single string for the database. At the moment it is not possible

to use an array with converters (you can track this feature request).

How to convert Enums correctly

Enums are popular with data objects like entities. When persisting enums, there are a

couple of best practices:

Do not persist the enum’s ordinal or name: Both are unstable, and can easily

change the next time you edit your enum definitions.

Use stable ids: Define a custom property (integer or string) in your enum that is

guaranteed to be stable. Use this for your persistence mapping.

Prepare for the unknown: Define an UNKNOWN enum value. It can serve to handle

null or unknown values. This will allow you to handle cases like an old enum value

getting removed without crashing your app.

https://github.com/greenrobot/ObjectBox/issues/42

Custom types in queries

QueryBuilder is unaware of custom types. You have to use the primitive DB type for

queries.

So for the Role example above you would get users with the role of admin with the query

condition .equal(UserProperties.Role, 2) .

Entity Inheritance

Objectbox - Entity inheritance

ObjectBox allows entity inheritance to share persisted properties in super classes. While

ObjectBox always allowed entities to extend a non-entity base class, ObjectBox 1.4+ also

allows extending entities. In addition to the @Entity annotation, we introduced a

@BaseEntity annotation for base classes, which can be used instead of @Entity .

There three types of base classes, which are defined via annotations:

No annotation: The base class and its properties are not considered for persistence.

@BaseEntity: Properties are considered for persistence in sub classes, but the base

class itself cannot be persisted.

@Entity: Properties are considered for persistence in sub classes, and the base class

itself is a normally persisted entity.

For example:

// base class:1
@BaseEntity2
public abstract class Base {3
 4
 @Id long id;5
 String baseString;6
 7
 public Base() {8
 }9
 10
 public Base(long id, String baseString) {11
 this.id = id;12
 this.baseString = baseString;13
 }14
}15

16
// sub class:17
@Entity18
public class Sub extends Base {19
 20
 String subString;21
 22

 public Sub() {23
 }24
 25
 public Sub(long id, String baseString, String subString) {26
 super(id, baseString);27
 this.subString = subString;28
 }29
}30

The model for Sub, Sub_, will now include all properties: id , baseString and

subString .

It is also possible to inherit properties from another entity:

// entities inherit properties from entities1
@Entity2
public class SubSub extends Sub {3
 4
 String subSubString;5
 6
 public SubSub() {7
 }8
 9
 public SubSub(long id, String baseString, String subString, String sub10
 super(id, baseString, subString);11
 this.subSubString = subSubString;12
 }13
}14

Notes on usage

It is possible to have classes in the inheritance chain that are not annotated with

@BaseEntity. Their properties will be ignored and will not become part of the entity

model.

It is not generally recommend to have a base entity class consisting of an ID property

only. E.g. Java imposes an additional overhead to construct objects with a sub class.

Depending on your use case using interfaces may be more straightforward.

Restrictions

Superclasses annotated with @BaseEntity can not be part of a library.

There are no polymorphic queries (e.g. you cannot query for a base class and

expect results from sub classes).

Currently any superclass, whether it is an @Entity or @BaseEntity, can not have any
relations (like a ToOne or ToMany property).

// THIS WILL NOT WORK1
@BaseEntity2
public abstract class Base {3
 @Id long id;4
 ToOne<OtherEntity> other; 5
 ToMany<OtherEntity> others; 6
}7

Data Model Updates

ObjectBox - Data Model Updates

ObjectBox manages its data model (schema) mostly automatically. The data model is

defined by the entity classes you define. When you add or remove entities or properties of

your entities, ObjectBox takes care of those changes without any further action from you.

For other changes like renaming or changing the type, ObjectBox needs extra
information to make things unambiguous. This works using unique IDs (UIDs) and an

@Uid annotation, as we will see below.

UIDs

ObjectBox keeps track of entities and properties by assigning them unique IDs (UIDs). All

those UIDs are stored in a file “objectbox-models/default.json”, which you should add to

your version control system (e.g. git). If you are interested, we have in-depth

documentation on UIDs and concepts. But let’s continue with how to rename entities or

properties.

In short: To make UID-related changes, put an @Uid annotation on the entity or property

and build the project to get further instructions. Repeat for each entity or property to

change.

Renaming Entities and Properties

So why do we need that UID annotation? If you simply rename an entity class, ObjectBox

only sees that the old entity is gone and a new entity is available. This can be interpreted in

two ways:

The old entity is removed and a new entity should be added, the old data is discarded.

This is the default behavior of ObjectBox.

The entity was renamed, the old data should be re-used.

So to tell ObjectBox to do a rename instead of discarding your old entity and data, you

need to make sure it knows that this is the same entity and not a new one. You do that by

attaching the internal UID to the entity.

The same is true for properties.

Now let’s walk through how to do that. The process works the same if you want to rename

a property:

How-to and Example

Step 1: Add an empty @Uid annotation to the entity/property you want to rename:

@Entity1
@Uid2
public class MyName { ... }3

Step 2: Build the project. The build will fail with an error message that gives you the

current UID of the entity/property:

error: [ObjectBox] UID operations for entity "MyName": 1
 [Rename] apply the current UID using @Uid(6645479796472661392L) -2
 [Change/reset] apply a new UID using @Uid(4385203238808477712L)3

Step 3: Apply the UID from the [Rename] section of the error message to your

entity/property:

@Entity1
@Uid(6645479796472661392L)2
public class MyName { ... }3

Step 4: The last thing to do is the actual rename on the language level (Java, Kotlin, etc.):

@Entity1
@Uid(6645479796472661392L)2
public class MyNewName { ... }3

Step 5: Build the project again, it should now succeed. You can now use your renamed

entity/property as expected and all existing data will still be there.

Repeat the steps above to rename another entity or property.

Note: Instead of the above you can also find the UID of the entity/property in the

ObjectBox default.json file yourself and add it together with the @Uid

annotation before renaming your entity/property. This can be faster when
renaming multiple properties.

Changing Property Types

ObjectBox does not support migrating existing property data to a new type. You

will have to take care of this yourself, e.g. by keeping the old property and

adding some migration logic.

There are two solutions to changing the type of a property:

Add a new property with a different name (this only works if the property has no @Uid

annotation already):

// old:1
String year;2
// new:3
int yearInt;4

Set a new UID for the property so ObjectBox treats it as a new property. Let’s walk

through how to do that:

How-to and Example

Step 1: Add the @Uid annotation to the property where you want to change the type:

@Uid1
String year;2

Step 2: Build the project. The build will fail with an error message that gives you a newly

created UID value:

error: [ObjectBox] UID operations for property "MyEntity.year": 1
 [Rename] apply the current UID using @Uid(6707341922395832766L) -2
 [Change/reset] apply a new UID using @Uid(9204131405652381067L)3

Step 3: Apply the UID from the [Change/reset] section to your property:

@Uid(9204131405652381067L)1
int year;2

Step 4: Build the project again, it should now succeed. You can now use the property in

your entity as if it were a new one.

Repeat the steps above to change the type of another property.

Meta Model, IDs, and UIDs

Unlike relational databases like SQLite, ObjectBox does not require you to create a

database schema. That does not mean ObjectBox is schema-less. For efficiency reasons,

ObjectBox manages a meta model of the data stored. This meta model is actually

ObjectBox’s equivalent of a schema. It includes known object types including all properties,

indexes, etc. A key difference to relational schemas is that ObjectBox tries to manage its

meta model automatically. In some cases it needs your help. That’s why we will look at

some details.

IDs

In the ObjectBox meta model, everything has an ID and a UID. IDs are used internally in

ObjectBox to reference entities, properties, and indexes. For example, you have an entity

“User” with the properties “id” and “name”. In the meta model the entity (type) could have

the ID 42, and the properties the IDs 1 and 2. Property IDs must only be unique within their

entity.

Note: do not confuse object IDs with meta model IDs: object IDs are the values

of the @Id property (see Object IDs in basics). In contrast, all objects are

instances of the entity type associated with a single meta model ID.

ObjectBox assigns meta model IDs sequentially (1, 2, 3, 4, …) and keeps track of the last

used ID to prevent ID collisions.

UIDs

As a rule of thumb, for each meta model ID there’s a corresponding UID. They

complement IDs and are often used in combination (e.g. in the JSON file). While IDs are

assigned sequentially, UIDs are a random long value. The job of UIDs is detecting and

resolving concurrent modifications of the meta model.

A UID is unique across entities, properties, indexes, etc. Thus unlike IDs, an UID already

used for an entity may not be used for a property. As a precaution to avoid side effects,

ObjectBox keeps track of “retired” UIDs to ensure previously used but now abandoned

UIDs are not used for new artifacts.

JSON for consistent IDs

ObjectBox stores a part of its meta model in a JSON file. This file should be available to

every developer and thus checked into a source version control system (e.g. git). The main

purpose of this JSON file is to ensure consistent IDs and UIDs in the meta model across

devices.

This JSON file is stored in the file objectbox-models/default.json. For example, look at the

file from the ObjectBox example project:

{1
 "_note1": "KEEP THIS FILE! Check it into a version control system (VCS) 2
 "_note2": "ObjectBox manages crucial IDs for your object model. See docs 3
 "_note3": "If you have VCS merge conflicts, you must resolve them accord4
 "entities": [5
 {6
 "id": "1:6645479796472661392",7
 "lastPropertyId": "4:1260602348787983453",8
 "name": "Note",9
 "properties": [10
 {11
 "id": "1:9211738071025439652",12
 "name": "id"13
 },14
 {15
 "id": "2:8804670454579230281",16
 "name": "text"17
 },18
 {19
 "id": "3:6707341922395832766",20
 "name": "comment"21
 },22

https://github.com/greenrobot/ObjectBoxExamples

 {23
 "id": "4:1260602348787983453",24
 "name": "date"25
 }26
]27
 }28
],29
 "lastEntityId": "1:6645479796472661392",30
 "lastIndexId": "0:0",31
 "lastSequenceId": "0:0",32
 "modelVersion": 2,33
 "retiredEntityUids": [],34
 "retiredIndexUids": [],35
 "retiredPropertyUids": [],36
 "version": 137
}38

As you can see, the “id” attributes combine the ID and UID using a colon. This protects

against faulty merges. When applying the meta model to the database, ObjectBox will

check for consistent IDs and UIDs.

Meta Model Synchronization

At build time, ObjectBox gathers meta model information from the entities (@Entity

classes) and the JSON file. The complete meta model information is written into the

generated class MyObjectBox .

Then, at runtime, the meta model assembled in MyObjectBox is synchronized with the

meta model inside the ObjectBox database (file). UIDs are the primary keys to synchronize

the meta model with the database. The synchronization involves a couple of consistency

checks that may fail when you try to apply illegal meta data.

Stable Renames using UIDs

At some point you may want to rename an entity class or just a property. Without further

information, ObjectBox will remove the old entity/property and add a new one with the new

name. This is actually a valid scenario by itself: removing one property and adding another.

To tell ObjectBox it should do a rename instead, you need to supply the property's previous

UID.

Add an @Uid annotation without any value to the entity or property you want to rename

and trigger a project build. The build will fail with a message containing the UID you need

to apply to the @Uid annotation.

Also check out this how-to guide for hands-on information on renaming and resetting.

Resolving Meta Model Conflicts

In the section on UIDs, we already hinted at the possibility of meta model conflicts. This is

caused by developers changing the meta model concurrently, typically by adding entities or

properties. The knowledge acquired in the previous paragraphs helps us to resolve the

conflicts.

The Nuke Option

During initial development, it may be an option to just delete the meta model and all

databases. This will cause a fresh start for the meta model, e.g. all UIDs will be

regenerated. Follow these steps:

Delete the JSON file (objectbox-models/default.json)

Build the project to generate a new JSON file from scratch

Commit the recreated JSON file to your VCS (e.g. git)

Delete all previously created ObjectBox databases (e.g. for Android, delete the app’s

data or uninstall the app)

While this is a simple approach, it has its obvious disadvantages and is completely useless

once an app has been published.

Pitfall: If the database file does not seem to get deleted, check for the presence of

android:allowBackup="true" in your Android manifest. Backups may resurrect old files

and thus should be off for this approach.

Manual conflict resolution

Usually, it is preferred to edit the JSON file to resolve conflicts and fix the meta model. This

involves the following steps:

Ensure IDs are unique: in the JSON file the id attribute has values in the format

“ID:UID”. If you have duplicate IDs after a VCS merge, you should assign a new ID

(keep the UID part!) to one of the two. Typically, the new ID would be “last used ID +

1”.

Update last ID values: for entities, update the attribute “lastEntityId”; for properties,

update the attribute “lastPropertyId” of the enclosing entity

Check for other ID references: do a text search for the UID and check if the ID part

is correct for all UID occurrences

To illustrate this with an example, let's assume the last assigned entity ID was 41. Thus the

next entity ID will be 42. Now, the developers Alice and Bob add a new entity without

knowing of each other. Alice adds a new entity “Ant” which is assigned the entity ID 42. At

the same time, Bob adds the entity “Bear” which is also assigned the ID 42. After both

developers committed their code, the ID 42 does not unique identify an entity type (“Ant” or

“Bear”?). Furthermore, in Alice’s ObjectBox the entity ID 42 is already wired to “Ant” while

Bob’s ObjectBox maps 42 to “Bear”. UIDs make this situation resolvable. Let’s say the UID

is 12345 for “Ant” and 9876 for “Bear”. Now, when Bob pulls Alice’s changes, he is able to

resolve the conflict. He manually assigns the entity ID 43 to “Bear” and updates the

lastEntityId attribute accordingly to “43:9876” (ID:UID). After Bob commits his changes,

both developers are able to continue with their ObjectBox files.

FAQ

Does ObjectBox support Kotlin? RxJava?

ObjectBox comes with full Kotlin support including data classes. And yes, it supports

RxJava and reactive queries without RxJava.

Does ObjectBox support object relations?

Yes. ObjectBox comes with strong relation support and offers features like “eager loading”

for optimal performance.

Does ObjectBox support multi-module projects? Can
entities be spread across modules?

The ObjectBox plugin only looks for entities in the current module, it does not search

library modules. However, you can have a separate database (MyObjectBox file) for each

module. Just make sure to pass different database names when building your BoxStore.

Is ObjectBox a “zero copy” database? Are properties
fetched lazily?

It depends. Internally and in the C API, ObjectBox does zero-copy reads. Java objects

require a single copy only. However, copying data is only a minor factor in overall

performance. In ObjectBox, objects are POJOs (plain objects), and all properties will be

properly initialized. Thus, there is no run time penalty for accessing properties and values

do not change in unexpected ways when the database updates.

https://docs.objectbox.io/kotlin-support
https://docs.objectbox.io/data-observers-and-rx
https://github.com/objectbox/objectbox-c

Are there any threading constrictions?

No. The objects you get from ObjectBox are POJOs (plain objects). You are safe to pass

them around in threads.

On which platforms does ObjectBox run?

ObjectBox supports Android 4.0.3 (API level or minimum SDK 15) and above and works

on most devices (armeabi-v7a, arm64-v8a, x86 and x86_64). It works with Java and Kotlin

projects.

ObjectBox also runs on Linux (64 bit), Windows (64 bit), macOS and iOS with support for

Kotlin, Java, Go, C, Swift and Python.

Can I use ObjectBox on the desktop/server?

Yes, you can ObjectBox on the desktop/server side. Contact us for details if you are

interested in running ObjectBox in client/server mode or containerized!

Can I use ObjectBox on smart IoT devices?

Generally speaking: Yes. You can run the ObjectBox database on any IoT device that runs

Linux. We also offer Go and C APIs.

How do I rename object properties or classes?

If you only do a rename on the language level, ObjectBox will by default remove the old

and add a new entity/property. To do a rename, you must specify the UID.

https://objectbox.io/dev-get-started/
https://docs.objectbox.io/advanced/data-model-updates

How much does ObjectBox add to my APK size?

The Google Play download size increases by around 2.0 MB (checked for ObjectBox

2.5.0) as a native library for each supported architecture is packaged. If you build multiple

APKs split by ABI or use Android App Bundle it only increases around 0.5 MB.

Tip: Open your APK or AAB in Android Studio and have a look at the lib folder

to see the raw file size and download size added.

The raw file (APK or AAB) size increases around 5.3 MB. This is because ObjectBox

adds extractNativeLibs="false" to your AndroidManifest.xml as recommended by

Google. This turns off compression. However, this allows Google Play to optimally

compress the APK before downloading it to each device (see download size above) and

reduces the size of your app updates (on Android 6.0 or newer). Read this Android

developers post for details. It also avoids issues that might occur when extracting the

libraries.

If you rather have a smaller APK instead of smaller app downloads and updates (e.g. when

distributing in other stores) you can override the flag in your AndroidManifest.xml :

<application1
 ...2
 // not recommended, increases app update size3
 android:extractNativeLibs="true"4
 tools:replace="android:extractNativeLibs"5
 ... 6
</applicaton>7

More importantly, ObjectBox adds little to the APK method count since it’s mostly written in

native code.

Can I ship my app with a pre-built database?

https://developer.android.com/studio/build/configure-apk-splits
https://developer.android.com/guide/app-bundle/
https://developer.android.com/topic/performance/reduce-apk-size#extract-false
https://medium.com/androiddevelopers/smallerapk-part-8-native-libraries-open-from-apk-fc22713861ff

Yes. ObjectBox stores all data in a single database file. Thus, you just need to prepare a

database file and copy it to the correct location on the first start of your app (before you

touch ObjectBox’s API).

There is an experimental initialDbFile() method when building BoxStore.

Let us know if this is useful!

The database file is called data.mdb and is typically located in a subdirectory called

objectbox (or any name you passed to BoxStoreBuilder). On Android, the DB file is

located inside the app’s files directory inside objectbox/objectbox/ . Or

objectbox/<yourname> if you assigned the custom name <yourname> using

BoxStoreBuilder.

How to reclaim disk space used by ObjectBox?

To reclaim disk space, close() the BoxStore and delete the database files using

BoxStore.deleteAllFiles(objectBoxDirectory) . To avoid having to close BoxStore

delete files before building it, e.g. during app start-up.

// If BoxStore is in use, close it first.1
store.close();2

3
BoxStore.deleteAllFiles(new File(BoxStoreBuilder.DEFAULT_NAME));4

5
// TODO Build a new BoxStore instance.6

BoxStore.removeAllObjects() does not reclaim disk space. It keeps the

allocated disk space so it returns fast and to avoid the performance hit of having

to allocate the same disk space when data is put again.

Answers to other questions

Troubleshooting /troubleshooting

Questions not related to Java, Kotlin or Android are answered in the general ObjectBox

FAQ.

If you believe to have found a bug or missing feature, please create an issue.

https://github.com/objectbox/objectbox-java/issues

If you have a usage question regarding ObjectBox, please post on Stack Overflow.

https://stackoverflow.com/questions/tagged/objectbox

https://objectbox.io/faq/
https://github.com/objectbox/objectbox-java/issues
https://stackoverflow.com/questions/tagged/objectbox

Troubleshooting

Unresolved reference: MyObjectBox (class not found,
etc.)

Make sure you do not have any other errors in your build. There have been problems

reported in relation to “android-apt”, so remove it from your build if possible. For Kotlin,

explicitly apply the kapt plugin (apply plugin: 'kotlin-kapt') before the ObjectBox

plugin.

Merge conflict or DbException after concurrent data
model modifications

If your team makes concurrent modifications to the data model (e.g. adding/removing

entities or properties) it may clash with your changes. Read the meta model docs on how

to resolve the conflicts.

DbException after switching git branch (no concurrent
data model modifications)

You might get an exception like

DbException DB’s last entity ID 4 is higher than 3 from model after switching

back from a branch and running your app. This is expected if that branch makes

incompatible changes to entities. You need to uninstall or clear all data of your app before

running it again.

Here is why: Let’s say you have created a new entity on a new branch and ran your app on

a device. This will upgrade the ObjectBox database on that device to support the new

entity (ObjectBox keeps track of entity types internally by storing some meta info inside the

database). Now, when you return to your previous branch and try to run the app ObjectBox

https://docs.objectbox.io/advanced/meta-model-ids-and-uids

will fail with an error message similar to the one above. This is because the entity types

passed by your code no longer match those stored inside the database. In other words, the

database can not be downgraded to the previous version. Thus, it is advised to clear the

database before running your app after switching branches. Check the meta model docs

for more details.

Couldn’t find “libobjectbox.so”

This can have various reasons. In general check your ABI filter setup or add one in your

Gradle build file.

If your app explicitly ships code for "armeabi": For Android, ObjectBox comes with

binaries for “armeabi-v7a” and “arm64-v8a” ABIs. We consider “armeabi” to be outdated

and thus do not support it. Check if you have a Gradle config like abiFilters "armeabi",

which is causing the problem (e.g. remove it or change it to “armeabi-v7a”).

If your app uses split APKs or App Bundle: some users might have sideloaded your APK

that includes the library for a platform that is incompatible with the one of their device. See

App Bundle, split APKs and Multidex for workarounds.

Version conflict with ‘com.google.code.findbugs:jsr305’

If you are doing Android instrumentation (especially with Espresso), you may get a warning

like this:

Error:Conflict with dependency ‘com.google.code.findbugs:jsr305’ in project
‘:app’. Resolved versions for app (3.0.2) and test app (2.0.1) differ. See

http://g.co/androidstudio/app-test-app-conflict for details.

You can easily resolve the version conflict by adding this Gradle dependency:

androidTestCompile 'com.google.code.findbugs:jsr305:3.0.2'

Background info.

https://docs.objectbox.io/advanced/meta-model-ids-and-uids
https://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.NdkOptions.html#com.android.build.gradle.internal.dsl.NdkOptions:abiFilters
http://g.co/androidstudio/app-test-app-conflict
https://github.com/objectbox/objectbox-java/issues/73

Incompatible property type

Check the data model migration guide if you get an exception like:

io.objectbox.exception.DbException: Property […] is not compatible to its
previous definition. Check its type.

or

 Cannot change the following flags for Property

Help with other issues

FAQ /faq

If you believe to have found a bug or missing feature, please create an issue.

https://github.com/objectbox/objectbox-java/issues

If you have a usage question regarding ObjectBox, please post on Stack Overflow.

https://stackoverflow.com/questions/tagged/objectbox

https://docs.objectbox.io/advanced/data-model-updates
https://github.com/objectbox/objectbox-java/issues
https://stackoverflow.com/questions/tagged/objectbox

Release History

V2.0 and later: check the changelog on the homepage

V1.5.0 – 2018/04/17

New Features/Improvements

Full support for Android local tests: use full ObjectBox features in local tests

New count method optimized for a given maximum count

Gradle option to define the package for MyObjectBox explicitly

Query condition startsWith now uses index if available for better performance

Fixes

Fixed some static methods in BoxStore to ensure that the native lib is loaded

Internal optimizations for 64 bit devices

Some fixes for entities in the default package

Entity can be named Property , no longer conflicts with ObjectBox Property class

Property queries for strings crashed on some Android devices if there were more than

512 results

Object Browser uses less threads

Object Browser now displays negative int/long values correctly

Changes to relations object in constructors were overwritten when constructors

delegated to other constructors

V1.4.4 – 2018/03/08

New Features/Improvements

Supply an initial database file using BoxStoreBuilder

Gradle plugin detects plain Java projects and configures dependencies

Improved Box.removeAll() performance for entities that have indexes or relations

Fixes

Fixed converting from arrays in entities

Fixed @NameInDb

Fixed Gradle “androidTestCompile is obsolete” warning

V1.4.3 – 2018/03/01

New Features

macOS support: with Linux, Windows, and macOS, ObjectBox now supports all major

desktop/server platforms. Use it for local unit tests or standalone Java applications.

Fixes

Fixed BoxStore.close being stuck in rare scenarios

Fixed an issue with char properties in entities

V1.4.2 – 2018/02/25

Note: This release requires the Android Gradle Plugin 3.0.0 or higher.

Improvements

JCenter: we’ve moved the ObjectBox artifacts to the JCenter repository. This simplifies

set up and improves accessibility (e.g. JCenter is not blocked from China).

Instant App support (only with Android Gradle Plugin 3.0.0 or higher)

V1.4.1 – 2018/01/23

Improvements

Added DbExceptionListener as a central place to listen for DB related exceptions

Minor improvements for ToMany and generated Cursor classes

Fixes

ToMany: fixed handling of duplicate entries (e.g. fixes swap and reverse operations)

ToMany: fixed removal of non-persisted element for standalone relations

https://developer.android.com/studio/releases/gradle-plugin.html#3-0-0

V1.4.0 – 2018/01/11

New Features

Property queries that return individual properties only (including distinct values,

unique, null values, primitive result arrays or scalars)

Entity inheritance (non-polymorphic)

50% size reduction of native libraries

V1.3.4 – 2017/12/07

Improvements

ToOne now implements equals() and hashCode() based on the targetId property

Android ABI x86_64 was added to the aar

Fixes

ID verification does not complain about “resurrected” objects that were loaded,

removed, and put again

Fixed setting Query parameters for Date type

Fixes for ObjectBox browser

V1.3.3 (1.3.x) – 2017/12/04

Please update to the latest version. We made important changes and fixes under the hood

to make ObjectBox perform better, generally, and especially in concurrent scenarios. In

addition, 1.3.x comes with several improvements for developers.

Improvements

Flag for query parameter logging

Object browser lets you download all entities as JSON

Object browser efficiency improvements: introduced streamed processing to reduce

memory consumption and increase performance for large data sets

Improved transaction logging, e.g. numbered transactions and waiting times for write

transactions

http://objectbox.io/files/objectbox-java/current/io/objectbox/DebugFlags.html

Closing the store (e.g. for tests, an app should just leave it open) will wait for any

ongoing write transaction to finish

Two additional overloads for static BoxStore.deleteAllFiles()

Added automatic retries for read transactions; also configurable for queries

Fixes

Fixes for concurrent setups (multi threaded, in live apps with up to 100 threads);

internally we improved our testing automation and CI infrastructure significantly

Fix for sumDouble throwing an exception

Fixed ProGuard rule for ToOne

V1.2.1 – 2017/11/10

Improvements

Improved debug logging for transactions and queries: enable this using

BoxStoreBuilder.debugFlags(…) with values from the DebugFlags class

Improved package selection for MyObjectBox if you use entities in multiple packages

(please check if you need to adjust your imports after the update)

ObjectBox Browser’s UI is more compact and thus better usable on mobile devices

Fixes

Fix for ObjectBoxLiveData firing twice

V1.2.0 – 2017/10/31

Compatibility note: We removed some Box.find methods, which were all tagged as

@Temporary. Only the Property based ones remain (for now, also @Temporary).

New Features

ObjectBoxLiveData: Implements LiveData from Android Architecture Components

Object ID based methods for ToMany: getById, indexOfId, removeById

More robust Android app directory detection that works around Android bugs

http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStore.html#deleteAllFiles-java.io.File-
http://objectbox.io/files/objectbox-java/current/io/objectbox/DebugFlags.html
http://objectbox.io/files/objectbox-java/current/io/objectbox/relation/ToMany.html

Using the new official FlatBuffers Maven dependency (FlatBuffer is not anymore

embedded in the artifact)

UI improvements for ObjectBox browser

Other minor improvements

Fixes

Fixed query order by float and double

Fixed an missing import if to-many relations referenced a entity in another package

Other minor fixes

V1.1.0 – 2017/10/03

New Features

Object Browser to view DB contents (Android)

Plain Java support to run ObjectBox on Windows and Linux

Added ToMany.hasA()/hasAll() to simplify query filters in Java

Sort query result via Comparator

Improved error messages on build errors

Internal clean up, dropping legacy plugin

Fixes

Annotation processor detects boolean getters starting with “is”

Fixed a NPE with eager and findFirst() when there is no result

V1.0.1 – 2017/09/10

First bug fix release for ObjectBox 1.0.

New Features

ToMany allows setting a Comparator to order the List (experimental)

Fixes

http://objectbox.io/objectbox-1-0/

Fix UID assignment process: use @Uid without value to see options (pin UID,

reset/change)

Fix relation code generation for entities in different packages

Fix Kotlin extension functions in transformed (library) project

Fix ToOne access if field is inaccessible (e.g. in Kotlin data classes if they are part of

constructor – lateinit were OK)

V1.0.0 – 2017/09/04

ObjectBox is out of beta! See our announcement blog post for details.

New Features

Eager loading of relations via query builder

Java filters as query post-processing

Minor improvements like a new callInReadTx method and making Query.forEach

breakable

Fixes

Fixed two corner cases with queries

V0.9.15 (beta) 2017/08/21 Hotfixes

Fixes

Fixed: Android flavors in caused the model file (default.json) to be written into the

wrong folder (inside the build folder) causing the build to fail

Fixed: failed builds if entity constructor parameters are of specific types

V0.9.14 (beta) 2017/08/14 Standalone relations, new build tools

For upgrade notes, please check the announcement post.

New Features

http://objectbox.io/objectbox-1-0/
http://objectbox.io/objectbox-db-0-9-14/

No more in-place code generation: Java source code is all yours now. This is based on

the new build tool chain introduced in 0.9.13. Thus Kotlin and Java share the same

build system. The old Java-based plugin is still available (plugin ID

“io.objectbox.legacy”) in this version.

“Standalone” to-many relations (without backing to-one properties/relations)

Gradle plugin tries to automatically add runtime dependencies (also (k)apt, but this

does not always work!?)

Improved error reporting

Fixes

Fixed the issue causing a “Illegal state: Tx destroyed/inactive, writeable cursor still

available” error log

V0.9.13 (beta) 2017/07/12 Kotlin Support

New Features

Kotlin support (based on a new annotation processor)

Started “object-kotlin”, a sub-project for Kotlin extensions (tiny yet, let us know your

ideas!)

BoxStoreBuilder: added maxReaders configuration

Get multiple entities by their IDs via Box methods (see get/getMap(Iterable))

ToOne and ToMany are now serializable (which does not imply serializing is a good

idea)

ObjectBox may now opt to construct entities using the no-args constructor if the all-

args constructor is absent

Prevents opening two BoxStores for the same DB file, which may have side effects

that are hard to debug

Various minor and internal improvements and fixes

Fixes

Fixed ToOne without an explicit target ID property

Fixed type check of properties to allow ToMany (instead of List)

Fixed @Convert in combination with List

Fixed a race condition with cursor deletion when Java’s finalizer kicked in potentially

resulting in a SIGSEGV

Fixed a leak with potentially occurring with indexes

V0.9.12 (beta) 2017/05/08 ToMany class

Update 2017/05/19: We just released 0.9.12.1 for the Gradle plugin (only), which fixes

two problems with parsing of to-many relations.

Added the new list type ToMany which represents a to-many relation. A ToMany object

will be automatically assigned to List types in the entity, eliminating a lot of generated

code in the entity.

ToMany comes with change tracking: all changes (add/remove) are automatically

applied to the DB when its hosting entity is persisted via put(). Thus, the list content is

synced to the DB, e.g. their relationship status is updated and new entities are put.

Streamlined annotations (breaking API changes):

@Generated(hash = 123) becomes @Generated(123),

@Property was removed,

@NameInDb replaces attributes in @Entity and the former @Property,

Backlinking to-many relations require @Backlink (only),

@Relation is now only used for to-one relations (and is subject to change in the next

version)

V0.9.11 (beta) 2017/04/25: Various improvements

Smarter to-one relations: if you put a new object that also has a new to-one relation

object, the latter will also be put automatically.

Getters and setters for properties are now only generated if no direct field access is

possible

JSR-305 annotations (@Nullable and others) to help the IDE find problems in your

code

@Uid(-1) will reassign IDs to simplify some migrations (docs will follow soon)

No more getter for ToOne objects in favor of direct field access

Quite a few internal improvements (evolved EntityInfo meta info object, etc.)

V0.9.10 (beta) 2017/04/10: Bug Fixes and minor improvements

New features and improvements

Breaking API: Replaced “uid” attribute of @Entity and @Property with @Uid

annotation

An empty @Uid will retrieve the current UID automatically

Some minor efficency improvements for read transactions

Better DB resources clean up for internal thread pool

Bug fixes

Better compatibility with Android Gradle plugin

Fixes for multithreaded reads of relation and index data

Fixed compilation error in generated sources for Entities without non-ID properties

V0.9.9 (beta) 2017/03/07: Bug Fixes

New features

Query.forEach() to iterate efficiently over query result objects

Bug fixes

Various bug fixes

V0.9.8 (beta) 2017/02/22: Going Reactive

New features

Data observers with reactive extensions for transformations, thread scheduling, etc.

Optional RxJava 2 library

OR conditions for QueryBuilder allow more powerful queries

Bug fixes

Fixed: Changing the order of an entity’s properties could cause errors in some cases

Fixed: Querying using relation IDs

V0.9.7 (beta) 2017/02/10

New features

LazyList returned by Query: another query option to defer getting actual objects until

actually accessing them. This enables memory efficient iterations over large results.

Also minimizes the time for a query to return. Note: LazyList cannot be combined with

order specifications just yet.

QueryBuilder and Query now support Date and boolean types directly

QueryBuilder supports now a notIn opperator

put() now uses entity fields directly unless they are private (can be more efficient than

calling getters)

Breaking internal changes

At this early point in the beta we decided to break backward compatibility. This allowed us

to make important improvements without worrying about rather complex migrations of

previous versions. We believe this was a special situation and future versions will likely be

backward compatible although we cannot make promises. If you intend to publish an app

with ObjectBox it’s a good idea to contact us before.

The internal data format was optimized to store data more compact. Previous

database files are not compatible and should be deleted.

We improved some details how IDs are used in the meta model. This affects the model

file, which is stored in your project directory (objectbox-models/default.json). Files

created by previous versions should be deleted.

V0.9.6 (first public beta release) 2017/01/24

See ObjectBox Announcement

http://greenrobot.org/announcement/introducing-objectbox-beta/

