ObjectBox Java

Java API

This is the ObjectBox documentation for our Java API. We strive to provide you with the

easiest and fastest solution to store and retrieve data. Your feedback on ObjectBox and

this documentation is very welcome. Use the "Was this page helpful?" smiley at the end of

each page or send us your comments to contact[at]objectbox.io - thank you! :)

- Getting started

ObjectBox Changelog

V2.6.0-RC - 2020/04/28

Note: this is a release candidate. Only some minor details may change before 2.6.0.

@befaultVvalue("") annotation for properties: If used, a null value returned from
the database is changed to the given default value (only empty string at this time). This
is useful if a new property is added to an entity that should be not-null, but there are
existing entities in the database that will return null for the new property. Note: naming
is not final, e.g. it may change to e.g. @AbsentvValue("") . GH#157
RxJava 3 support library: available under the new artifact objectbox-rxjava3 . It
includes Kotlin extension functions to more easily obtain Rx types, e.g. use

query.observable() to getan Observable . GH#83
Fix error handling if ObjectBox can't create a Java entity (the proper exception is now
thrown).

Support setting an alias after combining conditions using and() or or() . GH#83
Turn on incremental annotation processing by default. GH#620

Add documentation that string property conditions ignore case by default. Point to
using case-sensitive conditions for high-performance look-ups, e.g. when using string
UIDs.

Repository Artifacts are signed once again.

https://github.com/objectbox/objectbox-java/issues/157
https://github.com/objectbox/objectbox-java/tree/master/objectbox-rxjava3
https://github.com/objectbox/objectbox-java/issues/839
https://github.com/objectbox/objectbox-java/issues/834
https://github.com/objectbox/objectbox-java/issues/620
https://docs.objectbox.io/entity-annotations#object-ids-id

V3.0.0-alpha2 - 2020/03/24
Note: this is a preview release. Future releases may add, change or remove APIs.

o Add Kaotlin infix extension functions for creating conditions using the new Query API.
See the documentation for examples.
e The old Query API now also supports setting an alias after combining conditions using
and() or or() . GH#834

¢ Add documentation that string property conditions ignore case by default. Point to
using case-sensitive conditions for high-performance look-ups, e.g. when using string
UIDs.
e Java's sString[] and Kotlin's Array<String> are now a supported database type. A
converter is no longer necessary to store these types. Using the
arrayProperty.equal("item") condition, itis possible to query for entities where
"item" is equal to one of the array items.
e Support @Unsigned to indicate that values of an integer property (e.g. Integer and
Long in Java) should be treated as unsigned when doing queries or creating indexes.
See the Javadoc of the annotation for more detalils.
e Add new library to support RxJava 3, objectbox-rxjava3 . In addition
objectbox-kotlin adds extension functions to more easily obtain Rx types, e.g. use

query.observable() to getan Observable . GH#839

To use this release change the version of objectbox-gradle-plugin to 3.0.0-alpha2 .
The plugin now properly adds the preview version of objectbox-java to your

dependencies.

buildscript {
dependencies {
classpath "1do.objectbox:objectbox-gradle-plugin:3.0.0-alpha2"

}
}

dependencies {
// Artifacts with native code remain at 2.5.1.
implementation "io.objectbox:objectbox-android:2.5.1"

https://github.com/objectbox/objectbox-java/issues/834
https://docs.objectbox.io/entity-annotations#object-ids-id
https://github.com/objectbox/objectbox-java/tree/release-3.0.0-alpha2/objectbox-rxjava3
https://github.com/objectbox/objectbox-java/issues/839

The objectbox-android , objectbox-linux , objectbox-macos and
objectbox-windows artifacts shipping native code remain at version 2.5.1 as there have

been no changes. If you explicitly include them, make sure to specify their version as
2.5.1 .

V3.0.0-alphal - 2020/03/09

Note: this is a preview release. Future releases may add, change or remove APIs.

e A new Query API provides support for nested AND and OR conditions. See the
documentation for examples and notable changes. GH#201

¢ Subscriptions now publish results in serial instead of in parallel (using a single thread
vs. multiple threads per publisher). Publishing in parallel could previously lead to
outdated results getting delivered after the latest results. As a side-effect transformers
now run in serial instead of in parallel as well (on the same single thread per
publisher). GH#793

e Turn on incremental annotation processing by default. GH#620

To use this release change the version of objectbox-gradle-plugin t0 3.0.0-alphal

and add a dependency on objectbox-java version 3.0.0-alphal .

buildscript {
dependencies {
classpath "1do.objectbox:objectbox-gradle-plugin:3.0.0-alphal"

dependencies {
implementation "dio.objectbox:objectbox-java:3.0.0-alphal"
// Artifacts with native code remain at 2.5.1.
implementation "{io.objectbox:objectbox-android:2.5.1"

The objectbox-android , objectbox-linux , objectbox-macos and
objectbox-windows artifacts shipping native code remain at version 2.5.1 as there have

been no changes. However, if your project explicitly depends on them they will pull in

https://github.com/objectbox/objectbox-java/issues/201
https://github.com/objectbox/objectbox-java/issues/793
https://github.com/objectbox/objectbox-java/issues/620

version 2.5.1 of objectbox-java . Make sure to add an explicit dependency on of

objectbox-java version 3.0.0-alphal as mentioned above.

V2.5.1 - 2020/02/10

o Support Android Gradle Plugin 3.6.0. GH#817
e Support for incremental annotation processing. GH#620 It is off by default. To turn it on

set objectbox.incremental tO true iIn build.gradle

android {
defaultConfig {
javaCompileOptions {
annotationProcessorOptions {

arguments = ["objectbox.incremental™ : "true"]

}

V2.5.0 - 2019/12/12

Important bug fix - please update asap if you are using N:M relations!

o Fixed corner case for N:M ToMany (not the backlinks for ToOne) returning wrong
results

Improvements and New Features

¢ Property queries compute sums and averages more precisely (improved algorithms
and wider internal types)

e Query adds "describe" methods to obtain useful debugging information

+ New method removeAllObjects() in BoxStore to clear the database of all data

V2.4.1 - 2019/10/29

¢ More helpful error messages if annotations can not be combined.
¢ Improved documentation on various annotations.

https://github.com/objectbox/objectbox-java/issues/817
https://github.com/objectbox/objectbox-java/issues/620

V2.4.0 - 2019/10/15

Upgrade Notes

o Android: the AAR libraries ship Java 8 bytecode. Your app will not build unless you
upgrade com.android.tools.build:gradle to 3.2.1 or later.
¢ Android: the ObjectBox LiveData and Paging integration migrated from Android
Support Libraries to Jetpack (AndroidX) Libraries. If you are using them the library will
not work unless you make the following changes in your app:
o Upgrade com.android.tools.build:gradle to 3.2.1 or later.
o Upgrade compileSdkVersion to 28 or later.
o Update your app to use Jetpack (AndroidX); follow the instructions in Migrating to
AndroidX.
» Note: this version requires backwards-incompatible changes to the generated
MyObjectBox file. Make sure to rebuild your project before running your app so the
MyObijectBox file is re-generated.

Improvements & Fixes

V2.4.0 - 2019/10/15

o Class transformation works correctly if absolute path contains special characters.
GH#135

V2.4.0-RC - Release Candidate 2019/10/03

e Box: add getRelationEntities , getRelationBacklinkEntities , getRelationIds
and getRelationBacklinkIds to directly access relations without going through
ToMany.

o Box: add putBatched to put entities using a separate transaction for each batch.

e Box.removeByKeys() IS now deprecated; use removeByIds() instead.

* Query: fixed performance regressions introduced in version 2.3 on 32 bit devices in
combination with ordered results

o Fixed removing a relation and the related entity class. GH#490

* Resolved issue to enable query conditions on the target ID property of a ToOne
relation. GH#537

o Box.getAll always returns a mutable list. GH#685

https://developer.android.com/jetpack/androidx/migrate
https://github.com/objectbox/objectbox-java/issues/135
https://github.com/objectbox/objectbox-java/issues/490
https://github.com/objectbox/objectbox-java/issues/537
https://github.com/objectbox/objectbox-java/pull/685

» Do not overwrite existing objectbox-java or objectbox-kotlin dependency. GH#693

¢ Resolved a corner case build time crash when parsing package elements. GH#698

e When trying to find an appropriate get-method for a property, also check if the return
type matches the property type. GH#720

o Explicitly display an error if two entities with the same name are detected. GH#744

¢ The code in MyObjectBox is split up by entity to make it less likely to run into the Java
method size limit when using many @Entity classes. GH#750

¢ Query: improved performance for ordered results with a limit. GH#769

o Query: throw if a filter is used incorrectly with count or remove. GH#771

¢ Documentation and internal improvements.

V2.3.4 - 2019/03/19

¢ Avoid UnsatisfiedLinkError on Android devices that are not identifying as Android
correctly

» Fix displaying large objects in Object Browser 32 bit

o Kotlin properties starting with "is" of any type are detected

e Add objectbox-kotlin to dependencies if kotlin-android pluginis applied

(previously only for kotlin plugin)

e @BaseEntity classes can be generic

V2.3.3 - 2019/02/14

e Fixed a bug introduced by V2.3.2 affecting older Android versions 4.3 and below

V2.3.2 - 2019/02/04

o Potential work around for UnsatisfiedLinkError probably caused by installation errors
mostly in alternative app markets
o Support for Android Gradle Plugin 3.3.0: resolves deprecated API usage warnings.

V2.3.1 - 2019/01/08

o Fixed a corner case for Box.getAll() after removeAll() to return a stale object if no
objects are stored

https://github.com/objectbox/objectbox-java/issues/693
https://github.com/objectbox/objectbox-java/issues/698
https://github.com/objectbox/objectbox-java/issues/720
https://github.com/objectbox/objectbox-java/issues/744
https://github.com/objectbox/objectbox-java/issues/750
https://github.com/objectbox/objectbox-java/issues/769
https://github.com/objectbox/objectbox-java/issues/771

V2.3 - 2018/12/30
Improvements & Fixes

¢ Query improvements: findlds and LazyList also consider the order; offset and limit for
findlds

e Improved 32 bit support: Windows 32 version officially deployed, fixed a corner case
crash

» Property queries for a boolean property now allow sum()

o Added Box.isEmpty()

e Supporting older Linux distributions (now starting at e.g. Ubuntu 16.04 instead of
18.04)

o Fix for a corner case with Box.count() when using a maximum

* Minor improvements to the ObjectBox code generator

¢ Android: set extractNativeLibs to false to avoid issues with extracting the native library

V2.2 - 2018/09/27
Improvements & Fixes

e Fix: the unique check for string properties had false positives resulting in
UniqueViolationException. This occurs only in combination with IndexType.HASH (the
default) when hashes actually collide. We advise to update immediately to the newest
version if you are using hashed indexes.

e The release of new ObjectBox C APl made us change name of the JNI library
for better distinction. This should not affect you unless you depended on that (internal)
name.

¢ Improved compatibility with class transformers like Jacoco

o Fixed query links for M:N backlinks

e Improved error messages for the build tools

e The Object Browser AAR now includes the required Android permissions

V2.1 -2018/08/16
Minor Improvements & Fixes

o Entity counts are now cached for better performance

https://github.com/objectbox/objectbox-c

o Deprecated aggregate function were removed (deprecation in 1.4 with introduction of
PropertyQuery)

e Object browser hot fix: the hashed indexes introduced in 2.0 broke the object browser

e Object browser fixes: filters with long ints, improved performance in the schema view

e NPE fix in ToOne

¢ Added a specific NonUniqueResultException if a query did not return an expected
unique result

V2.0 - 2018/07/25

New Features/improvements

e Links and relation completeness and other features already announced in the 2.0 beta

« Unique constraint for properties via @Unique annotation

o Hash index: for strings the new default index is hash-based, which is more space
efficient

e Support for char type (16 bit)

e RXlib deployed in JCenter

* Rework of Query APIs: type safe properties (property now knows its owning entity)

¢ Allow query conditions of links using properties (without parameter alias)

¢ Query performance improvements when using order

e Property based count: query for non-null or unique occurrences of entity properties
(non-null and unique)

« Additional query conditions for strings: "greater than", "less than", "in"

o Added query conditions for byte arrays

e Set query parameters for "in" condition (int[] and long[])

V2.0 beta — 2018/06/26

New Features/Improvements

e Query across relation bounds using links (aka "join"): queries just got much more
powerful. For example, query for orders that have a customer with an address on
"Sesame Street". Or all persons, who have a grand parent called "Alice".

e Backlinks for to-many relations: now ObjectBox is "relation complete" with a bi-
directional many-to-many relation.

* Query performance improvements: getting min/max values of indexed properties in
constant time

e Android: added Paging library support (architecture components)

« Kotlin extensions: more Kotlin fun with ObjectBox KTX

e Query parameters aliases: helps setting query parameters in complex scenarios (e.g.
for properties of linked entities)

e Improved query parameter verification

¢ Many internal improvements to keep us going fast in the future

V1.5 and earlier

Check the release history for older releases

Getting started

@ Note: We focus on Android on this page. You can use ObjectBox in a plain
Java project as well.

& https:/lwww.youtube.com/watch?v=flmAeYY-uol

Adding ObjectBox to your Android Project

ObjectBox is available from the jcenter repository. To add ObjectBox to your Android
project, open the root build.gradle file of your project (not the ones for your app or

module) and add a global variable for the version and the ObjectBox Gradle plugin:

buildscript {
ext.objectboxVersion = '2.5.1'
repositories {
jcenter ()

}

dependencies {
// Android Gradle Plugin 3.2.1 or later supported.
classpath 'com.android.tools.build:gradle:3.5.4"'
classpath "dio.objectbox:objectbox-gradle-plugin:S$SobjectboxVersion"

Open the build.gradle file for your app or module and, after the com.android.application

plugin, apply the io.objectbox plugin:

https://www.youtube.com/watch?v=flmAeYY-u9I

Java

apply plugin: 'com.android.application'

apply plugin: 'io.objectbox' // Apply last.

Kotlin

apply plugin: 'com.android.application'
apply plugin: 'kotlin-android'

apply plugin: 'kotlin-kapt' // Required for annotation processing.
apply plugin: 'dio.objectbox' // Apply last.

@ If you encounter any problems in this or later steps, check out the FAQ and
Troubleshooting pages.

Then do "Sync Project with Gradle Files" so the Gradle plugin automatically adds the
required ObjectBox libraries and code generation tasks.

Optional: Advanced Setup
The ObjectBox plugin uses reasonable defaults and detects most configurations

automatically. However, if needed you can configure the model file path, the MyObjectBox
package, enable debug mode and more using advanced setup options.

Entity Classes

Next, define your model by annotating at least one class with @Entity and @Id . A

simple entity representing a user could look like this:

Java

// User.java
Q@Entity
public class User {

@Id public long -id;
public String name;

Kotlin

// User.kt
Q@Entity
data class User(

@Id var id: Long = O,
var name: String? = null

@ When using a data class, add default values for all properties. This
will ensure your data class will have a constructor that can be called by
ObjectBox. (Technically this is only required if using custom or transient
properties or relations, but it's a good idea to do it always.)

Entities must have one @Id property of type long (or Long in Kotlin). If you need to

use other types, like a String ID, see the @Id annotation docs. Also, it must have not-
private visibility (or a not-private getter and setter method).

For a deeper explanation and a look at all other available annotations (e.g. for relations
and indexes) check the Entity Annotations page.

Now build your project to generate required classes, for example using Build > Make
Project in Android Studio.

@ Note: If you make significant changes to your entities, e.g. by moving them or
modifying annotations, make sure to rebuild the project so generated
ObjectBox code is updated.

Model file

Among other files ObjectBox generates a JSON model file, by default to
app/objectbox-models/default.json . This JSON file will change every time you change

your entities or we make some internal changes to ObjectBox.

Keep this JSON file, commit the changes to version control!

@ In Android Studio you might have to switch the Project view from Android to
Project to see the default.json model file.

This file keeps track of unique IDs assigned to your entities and properties. This ensures
that an older version of your database can be smoothly upgraded if your entities or
properties change. It also enables to keep data when renaming entities or properties or to
resolve conflicts when two of your developers make changes at the same time.

Core Classes

https://docs.objectbox.io/advanced/meta-model-ids-and-uids

The following core classes are the essential interface to ObjectBox:

MyObjectBox: Generated based on your entity classes, MyObjectBox supplies a builder
to set up a BoxStore for your app.

BoxStore: The entry point for using ObjectBox. BoxStore is your direct interface to the
database and manages Boxes.

Box: A box persists and queries for entities. For each entity, there is a Box (supplied by
BoxStore).

Core Initialization

The BoxStore for your app is initialized using the builder returned by the generated
MyObjectBox class, for example in a small helper class like this:

Java

public class ObjectBox {
private static BoxStore boxStore;

public static void init(Context context) {
boxStore = MyObjectBox.builder ()
.androidContext(context.getApplicationContext())
build();
}

public static BoxStore get() { return boxStore; }

https://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStoreBuilder.html
https://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStore.html
https://objectbox.io/files/objectbox-java/current/io/objectbox/Box.html

Kotlin

object ObjectBox {
lateinit var boxStore: BoxStore
private set

fun init(context: Context) {
boxStore = MyObjectBox.builder ()
.androidContext(context.applicationContext)
Lbuild()

@ You might receive crash reports due to UnsatisfiedLinkError oOr
LinkageError on the build call. See App Bundle, split APKs and Multidex for

solutions.

The best time to initialize ObjectBox is when your app starts. We suggest to do it in the
onCreate method of your Application class:

Java

public class ExampleApp extends Application {
@Override
public void onCreate() {

super.onCreate();
ObjectBox.init(this);

https://developer.android.com/reference/android/app/Application

Kotlin

class ExampleApp : Application() {
override fun onCreate() {
super.onCreate()

ObjectBox.1init(this)

Now you can easily get a hold of BoxStore throughout your app (usually in fragments,
activities) and access the specific Box that you need:

Java

Box<User> userBox = ObjectBox.get().boxFor (User.class);

Kotlin

val userBox: Box<User> = ObjectBox.boxStore.boxFor ()

Here, User is an ObjectBox entity. And now that we have its Box, we can start storing

and retrieving it from the database.

Basic Box operations

The Box class is likely the class you interact with most. As seen previously, you get Box
instances via BoxStore.boxFor() . A Box instance gives you access to objects of a

https://objectbox.io/files/objectbox-java/current/io/objectbox/Box.html

particular type. For example, if you have User and oOrder entities, you need two Box

objects to interact with each:

Java

Box<User> userBox = boxStore.boxFor (User.class);

Box<Order> orderBox = boxStore.boxFor (Order.class);

Kotlin

val userBox: Box<User> = ObjectBox.boxStore.boxFor ()

val orderBox: Box<Order> = ObjectBox.boxStore.boxFor ()

These are some of the operations offered by the Box class:

e put: Inserts a new or updates an existing object with the same ID. When inserting and
put returns, an ID will be assigned to the just inserted object (this will be explained
below). put also supports putting multiple objects, which is more efficient.

+ get and getAll: Given an object’s ID reads it back from its box. To get all objects in the
box use getAll

+ remove and removeAll: Remove a previously put object from its box (deletes it).

remove also supports removing multiple objects, which is more efficient. removeAll
removes (deletes) all objects in a box.

¢ count: Returns the number of objects stored in this box.

¢ query: Starts building a query to return objects from the box that match certain
conditions. See queries for details.

For a complete list of methods available in the Box class, check its JavaDoc.

https://objectbox.io/files/objectbox-java/current/io/objectbox/Box.html

Object IDs

By default IDs for new objects are assighed by ObjectBox. When a new object is put, it
will be assigned the next highest available 1D:

Java

User user = new User();
// user.id ==
box.put(user);

// user.id != 0
long id = user.1id;

Kotlin

val user = User()
// user.id == 0
box.put(user)

// user.id !=
val id = user.i

For example, if there is an object with ID 1 and another with ID 100 in a box, the next new
object that is put will be assigned ID 101.

If you try to assign a new ID yourself and put the object, ObjectBox will throw an error.

@ If you need to assign IDs by yourself have a look at how to switch to self-
assigned IDs and what side-effects apply.

Reserved Object IDs

Object IDs can not be:

e 0 (zero)or null (if using java.lang.Long) As said above, when putting an object

with ID zero it will be assigned an unused ID (not zero).
* OXxFFFFFFFFFFFFFFFF (-1 in Java) Reserved for internal use.

For an advanced explanation see the page on Object IDs.

Transactions

While ObjectBox offers powerful transactions, it is sufficient for many apps to consider just
some basics guidelines about transactions:

e A put runs an implicit transaction.
o Prefer put bulk overloads for lists (like put(entities)) when possible.

o For a high number of DB interactions in loops, consider explicit transactions, such as
using runInTx() .

For more details check the separate transaction documentation.

Have an app with greenDAO? DaoCompat is for you!
DaoCompat is a compatibility layer that gives you a greenDAO like API for ObjectBox. It

makes switching from greenDAO to ObjectBox simple. Have a look at the documentation
and the example. Contact us if you have any questions!

Next steps

¢ Check out the ObjectBox example projects on GitHub.
e Learn about Queries and Relations.

http://greenrobot.org/greendao/documentation/objectbox-compat/
https://github.com/objectbox/objectbox-examples/tree/master/android-app-daocompat
https://github.com/objectbox/objectbox-java/issues
https://github.com/objectbox/objectbox-examples/

Tutorial: Demo Project

What is ObjectBox? It's a mobile database that makes object persistence simple and super
fast.

This tutorial will walk you through a simple note-taking app explaining how to do basic
operations with ObjectBox. To just integrate ObjectBox into your project, look for the
Getting Started page.

It's a good idea to clone the example project repository from GitHub right now:

git clone https://github.com/objectbox/objectbox-examples.git

This allows you to run the code and explore it in its entirety. The example project discussed
here is in the android-app folder (or android-app-kotlin for the Kotlin version). Itis a

simple Android app for taking notes where you can add new notes by typing in some text
and delete notes by clicking on an existing note.

The Note entity and Box class

To begin let’s jump right into the code: in the src folder you will find the entity class for a
note, Note . Itis persisted to the database and contains all data that is part of a note, like

an id, note text and the creation date.

https://github.com/objectbox/objectbox-examples

Java

Note.java

@Entity
public class Note {

@Id
long 1id;

String text;
String comment;
Date date;

Kotlin

Note.kt

Q@Entity
data class Note(
@Id var id: Long = 0,

var text: String? = null,
var comment: String? = null,
var date: Date? = null

In general, an ObjectBox entity is an annotated class persisted in the database with its
properties. In order to extend our note or to create new entities, you simply modify or
create new plain Java classes and annotate them with @Entity and @Id .

- Entity Annotations

Go ahead and build the project, for example by using Build > Make project in Android
Studio. This triggers ObjectBox to generate some classes, like MyObjectBox.java , and

some other classes used by ObjectBox internally.

Inserting notes

To see how new notes are added to the database, take a look at the NoteActivity class.

First of alla Box object for the Note class is prepared, which is done in onCreate() :

Java

NoteActivity.java

@Override
public void onCreate(Bundle savedInstanceState) {

notesBox = ObjectBox.get().boxFor (Note.class);

Kotlin

NoteActivity.kt

public override fun onCreate(savedInstanceState: Bundle?) {

notesBox = ObjectBox.boxStore.boxFor ()

@ Note: In the example project, ObjectBox Iis the name of a helper class to set

up and keep a reference to BoxStore .

When the user clicks the ADD button the method addNote() is called. There, a new

Note oObjectis created and put into the database using the Box reference:

Java

NoteActivity.java

private void addNote() {

Note note = new Note();

note.setText(noteText) ;

note.setComment (comment) ;

note.setDate(new Date());

notesBox.put(note) ;

Log.d(App.TAG, "Inserted new note, ID: " + note.getId());

Kotlin

NoteActivity.kt

private fun addNote() {

val note = Note(text = noteText, comment = comment, date = Date(

notesBox.put(note)
Log.d(App.TAG, "Inserted new note, ID: " + note.id)

Note that the ID is left at 0 when creating the note. In this case ObjectBox assigns an 1D
during put() .

Removingl/deleting notes

When the user taps a note it should be deleted. To remove (or delete) a note from its box
use remove() orone of its overloads. See noteClickListener :

Java

NoteActivity.java

OnItemClickListener noteClickListener = new OnItemClickListener() {
@Override
public void onItemClick(AdapterView<?> parent, View view, int po
Note note = notesAdapter.getItem(position);

notesBox.remove (note) ;
Log.d(App.TAG, '"Deleted note, ID: " + note.getId());

Kotlin

NoteActivity.kt

private val noteClickListener = OnItemClickListener { _, _, position
notesAdapter.getItem(position)?.also {
notesBox.remove(it)

Log.d(App.TAG, '"Deleted note, ID: " + -[it.id)

Querying notes

To query and display notes with a list adapter a Query instance is built once in

onCreate() :

Java

NoteActivity.java

@Override
public void onCreate(Bundle savedInstanceState) {

// Query all notes, sorted a-z by their text.
notesQuery = notesBox.query().order (Note_.text).build();

Kotlin

NoteActivity.kt

public override fun onCreate(savedInstanceState: Bundle?) {

// Query all notes, sorted a-z by their text.

notesQuery = notesBox.query {
order (Note_.text)

And then executed each time any notes change:

Java

NoteActivity.java

private void updateNotes() {

List<Note> notes = notesQuery.find();
notesAdapter.setNotes(notes);

Kotlin

NoteActivity.kt

private fun updateNotes() {

val notes = notesQuery.find()
notesAdapter.setNotes(notes)

In addition to an order, you can add various conditions, like equality or less/greater than,
when building a query.

- Queries

Updating notes and more

What is not shown in the example, but is just as easy is how to update an existing (== the
ID is not 0) note. Just modify any of its properties and call put() again with the changed

object:

Java

note.setText("This note has changed.");

notesBox.put(note) ;

Kotlin

note.text = "This note has changed."

notesBox.put(note)

There are additional methods to put, find, query, count or remove entities. Check out
the methods of the Box class to learn more.

—> Getting started

Setting up the database

Now that you saw ObjectBox in action, how did we get that BoxStore instance? Typically
you should set up a BoxStore once for the whole app. This example uses a helper class as
recommended in the Getting Started guide.

- Getting started

Remember: ObjectBox is a NoSQL database on its own and thus NOT based on SQL or
SQLite. That’'s why you do not need to set up “CREATE TABLE” statements during
initialization.

http://objectbox.io/files/objectbox-java/current/io/objectbox/Box.html
http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStore.html

@ Note: it is perfectly fine to never close the database. That's even recommended
for most apps.

Entity Annotations

ObjectBox - Database Persistence with Entity
Annotations

ObjectBox is a database that persists objects. For a clear distinction, we sometimes call

those persistable objects entities.

To let ObjectBox know which classes are entities you annotate them with @Entity , for

example:

Java

Q@Entity
public class User {

@Id
private long -id;

private String name;
// Not persisted:

@Transient
private int tempUsageCount;

// TODO: getters and setters.

Kotlin

@Entity
data class User(
@Id var id: Long = 0,

var name: String? = null,
// Not persisted:
@Transient var tempUsageCount: Int = 0

The @Entity annotation identifies the class User as a persistable entity. This will trigger

ObjectBox to generate persistence code tailored for this class.

@ Note:

e |t's often good practice to model entities as “dumb” data classes (POJOS)
with just properties.

o For Kotlin: When using a data class, add default values for all properties.
This will ensure your data class will have a constructor that can be called
by ObjectBox. (Technically this is only required if using custom or transient
properties or relations, but it's a good idea to do it always.)

Object IDs: @Id

In ObjectBox, entities must have one @Id property of type long (or Long in Kotlin)
with not-private visibility (or not-private getter and setter method) to efficiently get or
reference objects. You can use the nullable type java.lang.Long , but we do not

recommend it.

Java

@Entity
public class User {

@Id public long -id;

Kotlin

Q@Entity
data class User(

@Id var id: Long = 0,

If you need to use another type for IDs (such as a string UID given by a server), model
them as regular properties and use queries to look up objects by your application specific
ID. Also make sure to index the property, and if it's a string use a case-sensitive condition,

to speed up look-ups.

Java

@Entity

class StringIdEntity {
@Id public long -id;
@Index public String uid;

StringIdEntity entity = box.query()
.equal(StringIdEntity_.uid, uid, StringOrder.CASE_SENSITIVE)
.build().findUnique()

Kotlin

@Entity
data class StringIdEntity(
@Id var id: Long = 0,
@Index var uid: String? = null

val entity = box.query()
.equal(StringIdEntity_.uid, uid, StringOrder.CASE_SENSITIVE)
.build().findUnique()

ID properties are unique and indexed by default.

When you put a new object you do not assign an ID. By default IDs for new objects are
assigned by ObjectBox. See the page on Object IDs for details.

@ If you need to assign IDs by yourself have a look at how to switch to self-
assigned IDs and what side-effects apply.

Make entity data accessible

ObjectBox needs to access the data of your entity’s properties (e.g. in generated Cursor
classes). You have two options:

1. Give your property fields at least “package private” (not “private”) visibility. In Kotlin,
you can use @JvmField .

2. Provide standard getters (your IDE can generate them easily).

To improve performance when ObjectBox constructs your entities, you might also want to
provide an all-properties constructor (for Kotlin data classes, make sure all properties have
a default value instead). For example:

Java

@Entity
public class User {

@Id private long -id;
private String name;

// Not persisted:
@Transient private int tempUsageCount;

public User() { /* Default constructor *x/ }

public User(id, name) {
this.id = 1id;
this.name = name;

}

// Getters and setters for properties...

Kotlin

// Ensure all properties have default values:
@Entity
data class User(

@Id var id: Long = 0,

var name: String? = null,
// Not persisted:
@Transient var tempUsageCount: Int

Basic annotations for entity properties

Java

@NameInDb ("username")
private String name;

@Transient
private int tempUsageCount;

Kotlin

@NameInDb ("username'")
var name: String? = null,

@Transient
var tempUsageCount: Int = O,

@NameInDb lets you define a name on the database level for a property. This allows you to
rename the field (or property in Kotlin) without affecting the property name on the database

level.

@ Note:

o To rename properties and even entities you should use @Uid annotations
instead.
o @NamelnDb only works with inline constants to specify a column name.

@Transient (or alternatively the transient modifier) marks properties that should not
be persisted, like the temporary counter above. static properties will also not be

persisted.

Property Indexes with @Index

Annotate a property with @Index to create a database index for the corresponding

database column. This can improve performance when querying for that property.

Java

@Index

private String name;

Kotlin

@Index

var name: String? = null,

@ @Index is currently not supported for byte[] , float and double in Java

or the equivalent ByteArray , Float and Double in Kotlin.

An index stores additional information in the database to make look-ups faster. As an
analogy we could look at Java-like programming languages where you store objects in a
list. For example you could store persons using a List<Person> . Now, you want to
search for all persons with a specific name so you would iterate through the list and check
for the name property of each object. This is an O(N) operation and thus does don't scale
well with an increasing number of objects. To make this more scalable you can introduce a
second data structure Map<String, Person> with the name as a key. This will give you a
constant lookup time (O(1)). The downside of this is that it needs more resources (here:
RAM) and slows down add/remove operations on the list a bit. These principles can be
transferred to database indexes, just that the primary resource consumed is disk space.

Index types (String)

(i) since 2.0.0

ObjectBox 2.0 introduced index types. Before, every index used the property value for all
look-ups. Now, ObjectBox can also use a hash to build an index. Because String

properties are typically taking more space than scalar values, ObjectBox switched the
default index type to hash for strings.

You can instruct ObjectBox to use a value-based index for a String property by

specifying the index type :

Java

@Index (type = IndexType.VALUE)

private String name;

Kotlin

@Index(type = IndexType.VALUE)

var name: String? = null,

Keep in mind that for string , depending on the length of your values, a value-based

index may require more storage space than the default hash-based index.

ObjectBox supports these index types:

* Not specified or DEFAULT Uses best index based on property type (HASH for
Sstring , VALUE for others).

e VALUE Uses property values to build index. For String, this may require more
storage than a hash-based index.

o HASH Uses 32-bit hash of property values to build index. Occasional collisions may
occur which should not have any performance impact in practice. Usually a better
choice than HASH64, as it requires less storage.

e HASH64 Uses long hash of property values to build the index. Requires more storage
than HASH and thus should not be the first choice in most cases.

@ When migrating data from pre-2.0 ObjectBox versions, the default index
type for strings has changed from value to hash. With a plain @Index
annotation this will update the indexes automatically: the old value-based
indexes will be deleted and the new hash-bashed indexes will be build. A side
effect of this is that the database file might grow in the process. If you want to
prevent this, you stick to the "old" index type using

@Index(type = IndexType.VALUE) .

@ Limits of hash-based indexes: Hashes work great for equality checks, but not
for "starts with" type conditions. If you frequently use those, you should use
value-based indexes instead.

Unique constraints

(i) since 2.0.0

Annotate a property with @Unique to enforce that values are unique before an entity is

put:

Java

@Unique

private String name;

Kotlin

@Unique
var name: String? = null,

A put() operation will abort and throw a UniqueViolationException if the unique

constraint is violated:

Java

try {
box.put(new User("Sam Flynn"));

} catch (UniqueViolationException e) {
// A User with that name already exists.

Kotlin

try {
box.put(User("Sam Flynn"))

} catch (e: UniqueViolationException) {
// A User with that name already exists.

}

@ Unique constraints are based on an index. You can further configure the index
by adding an @Index annotation.

Relations

Creating to-one and to-many relations between objects is possible as well, see the
Relations documentation for details.

Triggering generation

Once your entity schema is in place, you can trigger the code generation process by
compiling your project. For example using Build > Make project in Android Studio.

If you encounter errors after changing your entity classes, try to rebuild (clean, then build)
your project to make sure old generated classes are cleaned.

Android

Android Local Unit Tests

Android Local Unit Tests

ObjectBox supports local unit tests. This gives you the full ObjectBox functionality for
running super fast test directly on your development machine.

On Android, unit tests can either run on an Android device (or emulator), so called
instrumented tests, or they can run on your local development machine. Running local unit
tests is typically much faster.

To learn how local unit tests for Android work in general have a look at the Android
developers documentation on Building Local Unit Tests. Read along to learn how to use
ObjectBox in your local unit tests.

Set Up Your Testing Environment

@ The setup step is only required for ObjectBox 1.4 or older (or if you want to
manually add the dependency). In newer versions the ObjectBox plugin
automatically adds the native ObjectBox library required for your current
operating system.

Add the native ObjectBox library to your existing test dependencies in your app’s
build.gradle file:

dependencies {
// Required -- JUnit 4 framework
testImplementation 'junit:junit:4.12'

// Optional -- manually add native ObjectBox library to override auto-
testImplementation "io.objectbox:objectbox-linux:S$objectboxVersion"
testImplementation "io.objectbox:objectbox-macos:S$objectboxVersion"
testImplementation "dio.objectbox:objectbox-windows:S$objectboxVersion"

https://developer.android.com/training/testing/unit-testing/index.html
https://developer.android.com/training/testing/unit-testing/local-unit-tests.html

Local unit tests are currently only supported on 64-bit operating systems.

@ Note: on Windows you might have to install the Microsoft Visual C++ 2015
Redistributable (x64) packages to use the native library.

Create a Local Unit Test Class

You create your local unit test class as usual under module-name/src/test/java/ . To use
ObjectBox in your test methods you need to build a BoxStore instance using the generated
MyObjectBox class of your project. You can use the directory(File) method on the
BoxStore builder to ensure the test database is stored in a specific folder on your machine.
To start with a clean database for each test you can delete the existing database using
BoxStore.deleteAllFiles(File).

The following example shows how you could implement a local unit test class that uses
ObjectBox:

public class NoteTest {

private static final File TEST_DIRECTORY = new File("objectbox-example
private BoxStore store;

@Before
public void setUp() throws Exception {
// delete database files before each test to start with a clean da

BoxStore.deleteAllFiles(TEST_DIRECTORY) ;

store = MyObjectBox.builder ()
// add directory flag to change where ObjectBox puts -its d
.directory(TEST_DIRECTORY)
// optional: add debug flags for more detailed ObjectBox 1
.debugFlags (DebugFlags.LOG_QUERIES | DebugFlags.LOG_QUERY_|
.build();

https://www.microsoft.com/en-US/download/details.aspx?id=48145
http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStoreBuilder.html#directory-java.io.File-
http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStore.html#deleteAllFiles-java.io.File-

@After
public void tearDown() throws Exception {
if (store != null) {
store.close();
store = null;

}
BoxStore.deleteAllFiles(TEST_DIRECTORY) ;

CHE

public void exampleTest() {
// get a box and use ObjectBox as usual
Box<Note> noteBox = store.boxFor (Note.class);

assertEquals(...);

@ Note: To help diagnose issues you can enable log output for ObjectBox
actions, such as queries, by specifying one or more debug flags when building

BoxStore.

Base class for tests

It's usually a good idea to extract the setup and tear down methods into a base class for

your tests. E.g.:

public abstract class AbstractObjectBoxTest {

protected static final File TEST_DIRECTORY = new File("objectbox—examp
protected BoxStore store;

@Before

public void setUp() throws Exception {
// delete database files before each test to start with a clean da
BoxStore.deleteAllFiles(TEST_DIRECTORY) ;
store = MyObjectBox.builder ()

http://objectbox.io/files/objectbox-java/current/io/objectbox/BoxStoreBuilder.html#debugFlags-int-

// add directory flag to change where ObjectBox puts -its d
.directory(TEST_DIRECTORY)
// optional: add debug flags for more detailed ObjectBox 1
.debugFlags (DebugFlags.LOG_QUERIES | DebugFlags.LOG_QUERY_|
.build();

}

@After
public void tearDown() throws Exception {

if (store != null) {
store.close();
store = null;

}
BoxStore.deleteAllFiles(TEST_DIRECTORY) ;

Testing Entities with Relations

@ Only required for ObjectBox 1.4.4 or older.

To test entities that have relations, like ToOne or ToMany properties, on the local JVM you
must initialize them and add a transient BoxStore field.

See the documentation about "initialization magic" for an example and what to look out for.
Background: the "initialization magic" is normally done by the ObjectBox plugin using the

Android plugin Transform API which allows to modify byte-code. But transforms do not run
for local unit tests (they do for instrumented tests).

LiveData (Arch. Comp.)

ObjectBox - LiveData with Android Architecture
Components

@ Since 1.2.0. Have a look at the example project on GitHub.

As an alternative to ObjectBox’ data observers and reactive queries, you can opt for the
LiveData approach supplied by Android Architecture Components. ObjectBox comes with
ObjectBoxLiveData , a class that can be used inside your ViewModel classes.

A simple ViewModel implementation for our note example app includes the special
ObjectBoxLiveData thatis constructed using a regular ObjectBox query:

public class NoteViewModel extends ViewModel {

private ObjectBoxLiveData<Note> notelLiveData;

public ObjectBoxLiveData<Note> getNoteLiveData(Box<Note> notesBox) {
if (noteLiveData == null) {
// query all notes, sorted a-z by their text
notelLiveData = new ObjectBoxLiveData<>(notesBox.query().order(

}

return notelLiveData;

Note that we did choose to pass the box to getNoteLiveData() . Instead you could use
AndroidViewModel , which provides access to the Application context, and then call
((App)getApplication()).getBoxStore().boxFor () inside the ViewModel. However,

the first approach has the advantage that our ViewModel has no reference to Android

classes. This makes it easier to unit test.

https://github.com/objectbox/objectbox-examples/tree/master/android-app-arch
https://developer.android.com/topic/libraries/architecture/livedata.html
https://developer.android.com/topic/libraries/architecture/viewmodel.html

Now, when creating the activity or fragment we get the ViewModel, access its LiveData
and finally register to observe changes:

NoteViewModel model = ViewModelProviders.of(this).get(NoteViewModel.class)
model.getNoteLiveData(notesBox) .observe(this, new Observer<List<Note>>() {
@Override

public void onChanged(@Nullable List<Note>; notes) {
notesAdapter.setNotes(notes);

b
s

The ObjectBoxLiveData will now subscribe to the query and notify observers when the
results of the query change, if there is at least one observer. In this example the activity is
notified if a note is added or removed. If all observers are destroyed, the LiveData will
cancel the subscription to the query.

If you have used ObjectBox observers in the past this might sound familiar. Well, because
it is! ObjectBoxLiveData just wraps a DataObserver on the query you give to it.

Paging (Arch. Comp.)

(i) since 2.0.0

ObjectBox supports integration with the Paging library that is part of Google's Android
Architecture Components. To that end, the ObjectBox Android library (
objectbox-android) provides the ObjectBoxDataSource class. Itis an implementation

of the Paging library's PositionalbDataSource .

@ Note: the following assumes that you have already added and set up the
Paging library in your project.

Using ObjectBoxDataSource

Within your ViewModel , similar to creating a LiveData directly, you first build your
ObjectBox query. But then, you construct an ObjectBoxDataSource factory with it instead.

This factory is then passed to a LivePagedListBuilder to build the actual LiveData .

Here is an example of a ViewModel class doing just that:

public class NotePagedViewModel extends ViewModel {

private LiveData<PagedList<Note>> notelLiveDataPaged;

public LiveData<PagedList<Note>> getNoteliveDataPaged(Box<Note> notesB
if (notelLiveDataPaged == null) {
// query all notes, sorted a-z by their text
Query<Note> query = notesBox.query().order (Note_.text) .build()
// build LiveData
notelLiveDataPaged = new LivePagedListBuilder<>(
new ObjectBoxDataSource.Factory<>(query),
20 /* page size */
) .build();

https://developer.android.com/topic/libraries/architecture/paging/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/reference/android/arch/paging/PositionalDataSource
https://developer.android.com/topic/libraries/architecture/paging/

return notelLiveDataPaged;

Note that the LiveData holds your entity class, here Note , wrapped inside a
PagedList . YOu observe the LivebData as usual in your activity or fragment, then submit

the PagedList on changes to your PagedListAdapter of the Paging library.

We will not duplicate how this works here, see the Paging library documentation for details
about this.

Next steps

+ Have a look at the ObjectBox Architecture Components example code.
e Check out ObjectBox support for LiveData.
e Learn how to build queries.

https://developer.android.com/topic/libraries/architecture/paging/
https://github.com/objectbox/objectbox-examples/tree/master/android-app-arch

App Bundle, split APKs and Multidex

Your app might observe crashes due to UnsatisfiedLinkError Or LinkageError (Since
ObjectBox 2.3.4) on some devices. This has mainly two reasons: If your app uses the App
Bundle format, the legacy split APK feature or Multidex the native library can't be found. Or
if your minimum SDK is below API 23 (Marshmallow), there are known bugs in Android's
native library loading code.

Let us know if you have more info on this in GitHub issue 605.

App Bundle and split APKs

When using an App Bundle or split APKs Google Play only delivers the split APKs required
for each user's device configuration, including its archite